Math, asked by SpiderMan32, 3 months ago

see it and answer

●Please help me
●Any mods or stars answer
●Donnot spam ​

Attachments:

Answers

Answered by anindyaadhikari13
29

Required Answer:-

Given:

  •  \sf \dfrac{1}{x - 1}  -  \dfrac{1}{x}  =  \dfrac{1}{x + 3} -  \dfrac{1}{x + 4}

To Find:

  • The value of x.

Solution:

Given that,

 \sf \implies \dfrac{1}{x - 1}  -  \dfrac{1}{x}  =  \dfrac{1}{x + 3} -  \dfrac{1}{x + 4}

→ LCM of (x - 1) and x is - x(x - 1)

 \sf \implies \dfrac{x - (x - 1)}{x(x - 1)} =  \dfrac{1}{x + 3} -  \dfrac{1}{x + 4}

 \sf \implies \dfrac{x - x  + 1}{x(x - 1)} =  \dfrac{1}{x + 3} -  \dfrac{1}{x + 4}

 \sf \implies \dfrac{1}{ {x}^{2} - x} =  \dfrac{1}{x + 3} -  \dfrac{1}{x + 4}

→ Again, LCM of (x + 3) and (x + 4) is - (x + 3)(x + 4)

 \sf \implies \dfrac{1}{ {x}^{2} - x} =  \dfrac{(x + 4) - (x + 3)}{(x + 3)(x + 4)}

 \sf \implies \dfrac{1}{ {x}^{2} - x} =  \dfrac{x + 4 -x - 3}{(x + 3)(x + 4)}

 \sf \implies \dfrac{1}{ {x}^{2} - x} =  \dfrac{1}{(x + 3)(x + 4)}

On cross multiplying, we get,

 \sf \implies (x + 3)(x + 4)=  {x}^{2}  - x

 \sf \implies x(x + 4) + 3(x + 4)=  {x}^{2}  - x

 \sf \implies  {x}^{2} + 4x + 3x +12={x}^{2}  - x

 \sf \implies  {x}^{2} + 7x +12={x}^{2}  - x

 \sf \implies {x}^{2} + 7x +12 - {x}^{2}  + x = 0

 \sf \implies 8x +12 =  0

 \sf \implies 4(2x + 3) =  0

 \sf \implies 2x + 3 =  \dfrac{0}{4}

 \sf \implies 2x + 3 = 0

 \sf \implies 2x =  - 3

 \sf \implies x = \dfrac{ - 3}{2}

Hence, the value of x is -3/2.

Answer:

  • x = -3/2.

•••♪

Answered by Anonymous
16

Answer:

  • x = -1.5

Given:

 : \implies \sf \dfrac{1}{x-1} - \dfrac{1}{x} = \dfrac{1}{x+3} - \dfrac{1}{x+4}

To Find:

The value of x.

Solution:

 : \implies \sf \dfrac{1}{x-1} - \dfrac{1}{x} - \dfrac{1}{x+3} + \dfrac{1}{x+4} = 0

 \\

 : \implies \sf \dfrac{3x^2 + 12x - x^3 - 6x^2 + 12 + 4x + x^3 + 3x^2 - 3x}{x \times (x-1) \times (x+3) \times (x+4)}

 \\

 : \implies \sf \dfrac{0+8x+12}{x \times (x-1) \times (x+3) \times (x+4)} = 0

 \\

 : \implies \sf \dfrac{8x + 12}{x \times (x-1) \times (x+3) \times (x+4)} = 0

 \\

 : \implies \sf 8x + 12 = 0

 \\

 : \implies \sf 8x = -12

 \\

 : \implies \sf x = - \dfrac{3}{2}

 \\

 : \implies \sf x = -1.5

 \\

\large \dag {\underline{\boxed{\sf x = -1.5}}}

Similar questions