Math, asked by ItzFadedGuy, 2 months ago

See the attached figure!

In the given figure, O is the centre of the circle with:

\tt{\leadsto AC = 24\:cm}

\tt{\leadsto AB = 7\:cm}

\tt{\leadsto \angle{BOD} = 90 \degree}

Find the area of the shaded region.

Please don't post irrelevent answers. If you do so, I will report!

Please explain this problem clearly. Thank you!

Attachments:

Answers

Answered by BrainlyWizzard
65

Given :

Area of the shaded region = area of the circle - area of the triangle ABC - area of the quadrant COD

To find :

Here, in triangle ABC ∠CAB=90°

(angle in a semicircle)

Hence triangle ABC is right-angled at A

Let's Start :

Then applying Pythagoras theorem,

BC² = AC² + AB²

BC² = 24² + 7²

BC² = 625

BC = 25 cm

\small\fbox\pink{ \sf \: Therefore diameter of circle = 25cm}

 \sf \: i.e., Radius =  \frac{25}{2}  = 12.5 cm

 \sf \: Then \:  area \:  of  \: circle = πr² = 490.625 cm²

\small\fbox\red{ \sf Area of triangle ABC = 1/2 × Base × Height}

 \sf= 84 cm²

 \sf \: Area \:  of  \: quadrant =   \frac{1}{4}  × πr²

Therefore area of shaded region,

= 122.65625 cm²

= 490.625 − 84 − 122.65625

= 283.96875 cm²

Answered by kailashmannem
72

 \Large{\bf{\green{\mathfrak{\dag{\underline{\underline{Given:-}}}}}}}

  • AC = 24 cm, AB = 7 cm,  \angle{BOD} = 90°

 \Large{\bf{\orange{\mathfrak{\dag{\underline{\underline{To \: Find:-}}}}}}}

  • Area of Shaded region

\Large{\bf{\red{\mathfrak{\dag{\underline{\underline{Solution:-}}}}}}}

  • Area of shaded region = (Area of semi circle - Area of ∆ABC) + Area of sector BOD

First,

  • Area of ∆ABC =

We know that,

  • Angle subtended by an semi circle is always 90°

Therefore,

  •  \angle A = 90°

Now,

  • ∆ABC is a right angled triangle.

  •  \angle A = 90°

  • AC = 24 cm

  • AB = 7 cm

We know that,

 \boxed{\pink{\sf Area \: of \: a \: triangle \: = \: \dfrac{1}{2} \: * \: h \: * \: b}}

Substituting the values,

  •  \sf Area \: of \: a \: triangle \: = \: \dfrac{1}{2} \: * \: AB \: * \: AC

  •  \sf Area \: of \: a \: triangle \: = \: \dfrac{1}{2} \: * \: 7 \: * \: 24

  •  \sf Area \: of \: a \: triangle \: = \: \dfrac{1}{\cancel{2}} \: * \: 7 \: * \: \cancel{24}

  •  \sf Area \: of \: a \: triangle \: = \: 1 \: * \: 7 \: * \: 12

  • Area of ABC = 84 cm².

Now,

  • Since, ∆ABC is a right angled triangle.

  • AB² + AC² = BC² (Phythagoras theorem)

  • 7² + 24² = BC²

  • 49 + 576 = BC²

  • 625 = BC²

  • BC = √625

  • BC = 25 cm

Now,

  • BC is diameter of the given circle.

We know that,

 \boxed{\pink{\sf Radius \: = \: \dfrac{Diameter}{2}}}

Substituting the values,

  •  \sf Radius \: = \: \dfrac{25}{2}

  •  \sf Radius \: = \: \dfrac{\cancel{25}}{\cancel{2}}

  • Radius = 12.5 cm

Now,

  • Area of semi circle COBA =

We know that,

 \boxed{\pink{\sf Area \: of \: semi \: circle \: = \: \dfrac{1}{2} \: * \: \pi r^2}}

Substituting the values,

  •  \sf Area \: of \: semi \: circle \: = \: \dfrac{1}{2} \: * \: \dfrac{22}{7} \: * \: 12.5^2

  •  \sf Area \: of \: semi \: circle \: = \: \dfrac{1}{2} \: * \: \dfrac{22}{7} \: * \: 156.25

  •  \sf Area \: of \: semi \: circle \: = \: 0.5 \: * \: 3.14 \: * \: 156.25

  • Area of semi circle COBA = 245.3125 cm².

Now,

  • Area of sector DOB =

We know that,

 \boxed{\pink{\sf Area \: of \: sector \: = \: \dfrac{\theta}{360^{\circ}} \: * \: \pi r^2}}

Here,

  •  \angle{DOB} = 90°

  • Radius = 12.5 cm

Substituting the values,

  •  \sf Area \: of \: sector \: = \: \dfrac{90^{\circ}}{360^{\circ}} \: * \: \dfrac{22}{7} \: * \: 12.5^2

  •  \sf Area \: of \: sector \: = \: \dfrac{\cancel{90^{\circ}}}{\cancel{360^{\circ}}} \: * \: \dfrac{22}{7} \: * \: 156.25

  •  \sf Area \: of \: sector \: = \: \dfrac{1}{4} \: * \: 3.14 \: * \: 156.25

  •  \sf Area \: of \: sector \: = \: 0.25 \: * \: 3.14 \: * \: 156.25

  • Area of sector DOB = 122.65625 cm².

Now,

  • Area of Shaded region =

(Area of semi circle - Area of ∆ABC) + Area of sector BOD

Substituting the values,

  • (245.3125 - 84) + 122.65625

  • 161.3125 + 122.65625

  • 283.96875

  •  \sim 283.97 cm²

Therefore,

  • Area of Shaded region = 283.97 cm².
Similar questions