see the attachment and help out
Answers
I HOPE YOU UNDERSTOOD
MAKE ME AS BRAINLIEST........
1) In quadrilateral ABCD, AB = BC = CA and CD = AD. If ∠B = 60° and ∠ACD = 68°. Find ∠BAD, ∠BCD and ∠D.
Answer -
Given :-
AB = BC = CA
∠B = 60°
CD = AD
∠ACD = 68°
Proof :-
In Δ ABC
AB = BC = CA (Given)
∠B = 60° (Given)
If the three side[ AB, BC and AD ] of the Δ ABC are equal, it means Δ ABC is an equilateral triangle..
So, ∠B[ ∠ABC ] = ∠BAC = ∠ACB (Angles of an equilateral triangle)
∴ ∠ABC = ∠BAC = ∠ACB = 60°
In Δ ACD
CD = AD (Given )
∠ACD = 68° (Given )
∠DAC = ∠ACD = 68° ( Angles opposite to equal sides are equal... )
∠BAD = ∠BAC + ∠DAC
= 60° + 68°
= 128°
⇒ ∠BAD = 128°
∠BCD = ∠ACB + ∠ACD
= 60° + 68°
= 128°
⇒ ∠BCD = 128°
∠D = 180° - [ ∠ACD + ∠DAC ]
= 180° - [ 68° + 68° ]
= 180° - 136°
= 44°
⇒ ∠D = 41°