Math, asked by abhi3023, 1 month ago

see the attachment nd plz solve it....

don't spam otherwise your answer will be reported​

Attachments:

Answers

Answered by Anonymous
30

Answer:

\color{Red}LHS=  \cos {}^{2}x + (x +  \frac{\pi}{3}) +  \cos {}^{2}(x -  \frac{\pi}{3} )

\color{Pink}  \frac{1}{2}(1 +  \cos2x) +  \frac{1}{2} [1 +  \cos2 (x +  \frac{\pi}{3})] +  \frac{1}{2}[1 +  \cos2(x  -   \frac{\pi}{3})]

\color{Orange} \frac{1}{2}[3 +  \cos2x +  \cos(2x +  \frac{2\pi}{3}) +  \cos( 2x -  \frac{2\pi}{3})      ]

\color{SkyBlue} [3  +  \cos2x + 2 \:  \cos2x \cos \frac{2\pi}{3}]

\color{Purple} \frac{1}{2}[3 +  \cos2x + 2( \cos2x) \:  \: ( \frac{ - 1}{2}) ]

\color{Red} \frac{1}{2}[3 +  \cos2x  - \cos2x\:  \:  ] =  \frac{3}{2} =  RHS

Answered by XxitzMichAditixX
1

Question:-

Attachment.

Correct answer:-

Answer:

\color{Red}LHS= \cos {}^{2}x + (x + \frac{\pi}{3}) + \cos {}^{2}(x - \frac{\pi}{3} )LHS=cos

2

x+(x+

3

π

)+cos

2

(x−

3

π

)

\color{Pink} \frac{1}{2}(1 + \cos2x) + \frac{1}{2} [1 + \cos2 (x + \frac{\pi}{3})] + \frac{1}{2}[1 + \cos2(x - \frac{\pi}{3})]

2

1

(1+cos2x)+

2

1

[1+cos2(x+

3

π

)]+

2

1

[1+cos2(x−

3

π

)]

\color{Orange} \frac{1}{2}[3 + \cos2x + \cos(2x + \frac{2\pi}{3}) + \cos( 2x - \frac{2\pi}{3}) ]

2

1

[3+cos2x+cos(2x+

3

)+cos(2x−

3

)]

\color{SkyBlue} [3 + \cos2x + 2 \: \cos2x \cos \frac{2\pi}{3}][3+cos2x+2cos2xcos

3

]

\color{Purple} \frac{1}{2}[3 + \cos2x + 2( \cos2x) \: \: ( \frac{ - 1}{2}) ]

2

1

[3+cos2x+2(cos2x)(

2

−1

)]

\color{Red} \frac{1}{2}[3 + \cos2x - \cos2x\: \: ] = \frac{3}{2} = RHS

2

1

[3+cos2x−cos2x]=

2

3

=RHS

Thnkuuu...!!! :)

hope it helps...!!! ♡

#ItzzMichhAditi ♡

Similar questions