see the attachment nd plz solve it....
don't spam otherwise your answer will be reported
Attachments:
Answers
Answered by
30
Answer:
Answered by
1
Question:-
Attachment.
Correct answer:-
Answer:
\color{Red}LHS= \cos {}^{2}x + (x + \frac{\pi}{3}) + \cos {}^{2}(x - \frac{\pi}{3} )LHS=cos
2
x+(x+
3
π
)+cos
2
(x−
3
π
)
\color{Pink} \frac{1}{2}(1 + \cos2x) + \frac{1}{2} [1 + \cos2 (x + \frac{\pi}{3})] + \frac{1}{2}[1 + \cos2(x - \frac{\pi}{3})]
2
1
(1+cos2x)+
2
1
[1+cos2(x+
3
π
)]+
2
1
[1+cos2(x−
3
π
)]
\color{Orange} \frac{1}{2}[3 + \cos2x + \cos(2x + \frac{2\pi}{3}) + \cos( 2x - \frac{2\pi}{3}) ]
2
1
[3+cos2x+cos(2x+
3
2π
)+cos(2x−
3
2π
)]
\color{SkyBlue} [3 + \cos2x + 2 \: \cos2x \cos \frac{2\pi}{3}][3+cos2x+2cos2xcos
3
2π
]
\color{Purple} \frac{1}{2}[3 + \cos2x + 2( \cos2x) \: \: ( \frac{ - 1}{2}) ]
2
1
[3+cos2x+2(cos2x)(
2
−1
)]
\color{Red} \frac{1}{2}[3 + \cos2x - \cos2x\: \: ] = \frac{3}{2} = RHS
2
1
[3+cos2x−cos2x]=
2
3
=RHS
Thnkuuu...!!! :)
hope it helps...!!! ♡
#ItzzMichhAditi ♡
Similar questions