Math, asked by abhi3023, 13 days ago

see the attachment nd plz solve it....​

nd don't spam otherwise your answer will be reported..​

Attachments:

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{cos^2(x)+cos^2\bigg(x+\dfrac{\pi}{3}\bigg)+cos^2\bigg(x-\dfrac{\pi}{3}\bigg)}

\sf{=cos^2(x)+\bigg\{cos(x)\,cos\bigg(\dfrac{\pi}{3}\bigg)-sin(x)\,sin\bigg(\dfrac{\pi}{3}\bigg)\bigg\}^2+\bigg\{cos(x)\,cos\bigg(\dfrac{\pi}{3}\bigg)+sin(x)\,sin\bigg(\dfrac{\pi}{3}\bigg)\bigg\}^2}

\sf{=cos^2(x)+\bigg\{\dfrac{1}{2}\cdot\,cos(x)-\dfrac{\sqrt{3} }{2}\cdot\,sin(x)\bigg\}^2+\bigg\{\dfrac{1}{2}\cdot\,cos(x)+\dfrac{\sqrt{3} }{2}\cdot\,sin(x)\bigg\}^2}

\rm{\green{We\,\,know,\,\,(a+b)^2+(a-b)^2=2(a^2+b^2)}}

So,

\sf{=cos^2(x)+2\bigg[\bigg\{\dfrac{1}{2}\cdot\,cos(x)\bigg\}^2+\bigg\{\dfrac{\sqrt{3} }{2}\cdot\,sin(x)\bigg\}^2\bigg]}

\sf{=cos^2(x)+2\bigg[\dfrac{1}{4}\cdot\,cos^2(x)+\dfrac{3}{4}\cdot\,sin^2(x)\bigg]}

\sf{=cos^2(x)+\dfrac{1}{2}\cdot\,cos^2(x)+\dfrac{3}{2}\cdot\,sin^2(x)}

\sf{=\bigg(1+\dfrac{1}{2}\bigg)cos^2(x)+\dfrac{3}{2}sin^2(x)}

\sf{=\dfrac{3}{2}cos^2(x)+\dfrac{3}{2}sin^2(x)}

\sf{=\dfrac{3}{2}\{cos^2(x)+sin^2(x)\}}

\sf{=\dfrac{3}{2}\times1}

\sf{=\dfrac{3}{2}}

Answered by ankitaadsul1110
1

Answer:

me aap ko achi trhse janti nihu is lia

Similar questions