see the attachmeny
Find the value of x in given figure.
Quality answer required .
no spam
Answers
Answer:
x = 20°
Explanation:
1. Draw EF parallel to BC. Then angle DFE = 80º because of equal corresponding angles of parallel lines.
2. Drop a perpendicular line to BC from A, hitting BC at G. Because of congruent triangles ABG and AGC, angle BAG = angle CAG = 10º.
3. Now draw line FC, calling H the point where line FC intersects line BE. Line AG passes through point H, because of symmetry.
4. Angle BHC = 60º since the other angles of the triangle BHC are both 60º.
5. BE = FC (because of corresponding sides of congruent triangles FBC and EBC). BH = HC (call BH b) because triangle BHC is isosceles. So by subtraction, FH = HE.
6. Since angle FHE = 60º (vertical angle to BHC), and because FH = HE from 5, angle FHE = angle HEF = 60º, so triangle FHE is equilateral. Thus, FE = FH = HE. Call each of those sides a.
7. Now AF = AE (because AB = AC and FB = EC, by subtraction AF = AE).
8. Because triangle AEB is isosceles, AE = BE = b + a. Thus, AF = BE = b + a (since AF = AE from 7).
9. BE = FC (congruent triangles BEC and BFC), so AF = FC, since AF = BE from 8.
10. Triangle AFH is congruent to triangle CFD because AF = FC; angle AFH = 140º = angle CFD; angle DCF = 10º = angle FAH. Thus, corresponding sides of the congruent triangles AFH and triangle CFD are equal, so FH = FD. But FH = FE from 6, so FE = FD.
11. Since FE = FD, angle FDE = angle FED and since angle DFE = 80º from (1), angle FDE = 50º = angle FED.
12. So angle BDC = 30º (because DBC = 80° and BCD = 70°) , so by subtracting angle BDE = 50° from angle BDC , angle CDE = 20º
TheTriggeredInsaan is waiting for your help.
Add your answer and earn points.
Answer
0
k3tonan
Helping Hand
3 answers
31 people helped
Answer:
x = 20°
Explanation:
1. Draw EF parallel to BC. Then angle DFE = 80º because of equal corresponding angles of parallel lines.
2. Drop a perpendicular line to BC from A, hitting BC at G. Because of congruent triangles ABG and AGC, angle BAG = angle CAG = 10º.
3. Now draw line FC, calling H the point where line FC intersects line BE. Line AG passes through point H, because of symmetry.
4. Angle BHC = 60º since the other angles of the triangle BHC are both 60º.
5. BE = FC (because of corresponding sides of congruent triangles FBC and EBC). BH = HC (call BH b) because triangle BHC is isosceles. So by subtraction, FH = HE.
6. Since angle FHE = 60º (vertical angle to BHC), and because FH = HE from 5, angle FHE = angle HEF = 60º, so triangle FHE is equilateral. Thus, FE = FH = HE. Call each of those sides a.
7. Now AF = AE (because AB = AC and FB = EC, by subtraction AF = AE).
8. Because triangle AEB is isosceles, AE = BE = b + a. Thus, AF = BE = b + a (since AF = AE from 7).
9. BE = FC (congruent triangles BEC and BFC), so AF = FC, since AF = BE from 8.
10. Triangle AFH is congruent to triangle CFD because AF = FC; angle AFH = 140º = angle CFD; angle DCF = 10º = angle FAH. Thus, corresponding sides of the congruent triangles AFH and triangle CFD are equal, so FH = FD. But FH = FE from 6, so FE = FD.
11. Since FE = FD, angle FDE = angle FED and since angle DFE = 80º from (1), angle FDE = 50º = angle FED.
12. So angle BDC = 30º (because DBC = 80° and BCD = 70°) , so by subtracting angle BDE = 50° from angle BDC , angle CDE = 20º