Math, asked by chahatgupta10, 9 months ago

See the image and plss answer the question ​

Attachments:

Answers

Answered by Saby123
8

 \sf{ \bold{ To \: Prove \: - }} \\ \\ \sf{ \dfrac{ \sin { \theta } }{ \cot { \theta } + \csc{ \theta } } - \dfrac{ \sin { \theta } }{ \cot { \theta } - \csc{ \theta } } = 2 } \\ \\ \sf{ \implies { \dfrac{ \sin{ \theta } }{ \frac{ \cos { \theta } }{ \sin { \theta } } + \frac{1}{ \sin { \theta }} } - \dfrac{ \sin{ \theta } }{ \frac{ \cos { \theta } }{ \sin { \theta } } - \frac{1}{ \sin { \theta }} } = 2 }} \\ \\ \sf{ \bold { Taking \: LCM \: - }} \\ \\ \sf{ \implies { \dfrac{ \sin { \theta } }{ \frac{ \cos { \theta } + 1 }{ \sin { \theta } } } - \dfrac{ \sin { \theta } }{ \frac{ \cos { \theta } - 1 }{ \sin { \theta } } } = 2 }} \\ \\ \sf{ \implies { \dfrac{ sin^2 { \theta } }{ 1 + \cos { \theta } } - \dfrac{ sin^2 { \theta } }{ 1 - \cos { \theta } } = 2 }} \\ \\ \sf{ \bold { sin^2 { \theta } = 1 - cos^2 { \theta } }} \\ \\ \sf{ \bold{ Substituting \: this \: value \: - }} \\ \\ \sf{ \implies { 1 - \cos { \theta } + 1 + \cos{ \theta } }} \\ \\ \sf{ \implies { 2 }} \\ \\ \sf{ \bold{ Hence \: Proved } }

 \sf{ \bold{ To \: Prove \: - }} \\ \\ \sf{ \dfrac{ \sin { \theta } }{ \cot { \theta } + \csc{ \theta } } - \dfrac{ \sin { \theta } }{ \cot { \theta } - \csc{ \theta } } = 2 } \\ \\ \sf{ \implies { \dfrac{ \sin{ \theta } }{ \frac{ \cos { \theta } }{ \sin { \theta } } + \frac{1}{ \sin { \theta }} } - \dfrac{ \sin{ \theta } }{ \frac{ \cos { \theta } }{ \sin { \theta } } - \frac{1}{ \sin { \theta }} } = 2 }} \\ \\ \sf{ \bold { Taking \: LCM \: - }} \\ \\ \sf{ \implies { \dfrac{ \sin { \theta } }{ \frac{ \cos { \theta } + 1 }{ \sin { \theta } } } - \dfrac{ \sin { \theta } }{ \frac{ \cos { \theta } - 1 }{ \sin { \theta } } } = 2 }} \\ \\ \sf{ \implies { \dfrac{ sin^2 { \theta } }{ 1 + \cos { \theta } } - \dfrac{ sin^2 { \theta } }{ 1 - \cos { \theta } } = 2 }} \\ \\ \sf{ \bold { sin^2 { \theta } = 1 - cos^2 { \theta } }} \\ \\ \sf{ \bold{ Substituting \: this \: value \: - }} \\ \\ \sf{ \implies { 1 - \cos { \theta } + 1 + \cos{ \theta } }} \\ \\ \sf{ \implies { 2 }} \\ \\ \sf{ \bold{ Hence \: Proved } }

 \sf{ \bold{ To \: Prove \: - }} \\ \\ \sf{ \dfrac{ \sin { \theta } }{ \cot { \theta } + \csc{ \theta } } - \dfrac{ \sin { \theta } }{ \cot { \theta } - \csc{ \theta } } = 2 } \\ \\ \sf{ \implies { \dfrac{ \sin{ \theta } }{ \frac{ \cos { \theta } }{ \sin { \theta } } + \frac{1}{ \sin { \theta }} } - \dfrac{ \sin{ \theta } }{ \frac{ \cos { \theta } }{ \sin { \theta } } - \frac{1}{ \sin { \theta }} } = 2 }} \\ \\ \sf{ \bold { Taking \: LCM \: - }} \\ \\ \sf{ \implies { \dfrac{ \sin { \theta } }{ \frac{ \cos { \theta } + 1 }{ \sin { \theta } } } - \dfrac{ \sin { \theta } }{ \frac{ \cos { \theta } - 1 }{ \sin { \theta } } } = 2 }} \\ \\ \sf{ \implies { \dfrac{ sin^2 { \theta } }{ 1 + \cos { \theta } } - \dfrac{ sin^2 { \theta } }{ 1 - \cos { \theta } } = 2 }} \\ \\ \sf{ \bold { sin^2 { \theta } = 1 - cos^2 { \theta } }} \\ \\ \sf{ \bold{ Substituting \: this \: value \: - }} \\ \\ \sf{ \implies { 1 - \cos { \theta } + 1 + \cos{ \theta } }} \\ \\ \sf{ \implies { 2 }} \\ \\ \sf{ \bold{ Hence \: Proved } }

 \sf{ \bold{ To \: Prove \: - }} \\ \\ \sf{ \dfrac{ \sin { \theta } }{ \cot { \theta } + \csc{ \theta } } - \dfrac{ \sin { \theta } }{ \cot { \theta } - \csc{ \theta } } = 2 } \\ \\ \sf{ \implies { \dfrac{ \sin{ \theta } }{ \frac{ \cos { \theta } }{ \sin { \theta } } + \frac{1}{ \sin { \theta }} } - \dfrac{ \sin{ \theta } }{ \frac{ \cos { \theta } }{ \sin { \theta } } - \frac{1}{ \sin { \theta }} } = 2 }} \\ \\ \sf{ \bold { Taking \: LCM \: - }} \\ \\ \sf{ \implies { \dfrac{ \sin { \theta } }{ \frac{ \cos { \theta } + 1 }{ \sin { \theta } } } - \dfrac{ \sin { \theta } }{ \frac{ \cos { \theta } - 1 }{ \sin { \theta } } } = 2 }} \\ \\ \sf{ \implies { \dfrac{ sin^2 { \theta } }{ 1 + \cos { \theta } } - \dfrac{ sin^2 { \theta } }{ 1 - \cos { \theta } } = 2 }} \\ \\ \sf{ \bold { sin^2 { \theta } = 1 - cos^2 { \theta } }} \\ \\ \sf{ \bold{ Substituting \: this \: value \: - }} \\ \\ \sf{ \implies { 1 - \cos { \theta } + 1 + \cos{ \theta } }} \\ \\ \sf{ \implies { 2 }} \\ \\ \sf{ \bold{ Hence \: Proved } }

Answered by Mysterioushine
6

iam \: representing \: theta \: with \:  \alpha  \\  \\   =  >  \frac{ \sin \alpha }{( \cot\alpha +  \csc \alpha ) }  +  \frac{ \sin \alpha  }{ (\cot \alpha -   \csc\alpha) \ \   }  \\  \\  =  \frac{ \sin\alpha( \cot\alpha  -  \ \csc  \alpha)  -  \sin \alpha( \cot \alpha  +   \csc \alpha)        }{( \cot\alpha +  \ \csc \alpha)( \cot\alpha -  \ \csc \alpha)       }  \\  \\  =  \frac{ \cos\alpha -  \sin\alpha \ \csc  \alpha  -   \cos\alpha  - \sin\alpha \ \csc \alpha         }{ \cot {}^{2} { \alpha }  -  \tan {}^{2} \alpha  }  \\  \\  =  \frac{ - 2   }{ - 1}  = 2 = rhs \\  \\ the \: formulas \: which \: i \: have \: used \: in \: this \:  \\  \\ problem \: solvation \: are \: in \: the \: above \: pic

HOPE IT HELPS !!!!

Attachments:
Similar questions