Math, asked by chahatgupta10, 10 months ago

See the image and plss answer the question ​

Attachments:

Answers

Answered by VishnuPriya2801
8

Answer:-

(Theta is taken as "A".)

Given:

 \sf{\frac{ \sin\:A-  \cos\:A}{ \sin\:A+  \cos\:A }   +  \frac{ \sin\:A +  \cos\:A }{ \sin\:A -  \cos\:A}  =  \frac{2}{2 { \sin }^{2} A - 1}}  \\  \\

Taking LCM in LHS,

  \sf \implies\frac{ {( \sin\:A -  \cos\:A) }^{2} +  {( \sin\:A  +  \cos\:A) }^{2}  }{( \sin\:A +  \cos\:A)(  \sin\:A -  \cos\:A  )   }   \\  \\

[ (a + b)(a + b) = (a + b)² and (a - b)(a - b) = (a - b)² ]

 \sf \implies \:  \frac{ { \sin }^{2} A +  { \cos}^{2}A - 2  \sin\:A  \cos\:A   +   { \sin}^{2}  A +  { \cos }^{2} A + 2 \sin\:A\cos\:A }{ { \sin }^{2} A -  { \cos }^{2} A}  \\  \\

[ (a + b)² = a² + b² + 2ab ;

(a - b)² = a² + b² - 2ab,

(a + b)(a - b) = a² - b²]

 \sf \implies \:  \frac{1 + 1}{ { \sin }^{2}A  - (1  -  { \sin}^{2}A)   }  \\  \\

[ Sin² ∅ + Cos² ∅ = 1 → Cos² ∅ = 1 -

Sin²∅ ]

 \sf \implies \:  \frac{2}{ {{ \sin }^{2} A}  + { \sin }^{2} A - 1 } \\  \\  \sf \implies \:  \frac{2}{2 { \sin }^{2}A - 1 }  = RHS.

Hence, Proved.

Answered by Uniquedosti00017
1

Answer:

refer the attachment for the solution.

if it helps you then Mark as brainliest.

Attachments:
Similar questions