see the picture and answer the question
Attachments:
Answers
Answered by
1
Acc to euclids lemma
a=bq+r
Since 9 is a multiple of 3 we can take b as3
if b is 3 then r can take the values 0,1,2
When r=0
a=bq+r
a=3q+0
cubing on both sides
a^3=(3q)^3
a^3=27q^3
a^3=9×3q^3
Let us assume 3q^3 =m
a^3=9m
When r=1
a=3q+1
cubing on both the sides
a^3=(3q+1)^3
(a+b)^3=a^3+3a^2b+3ab^2+b^3
a^3=27q^3+27q^2+9q+1
a^3=9(3q^3+3q^2+q)+1
let us assume 3q^3+3q^2+q be m
a^3=9m+1
When r=2
a=3q+2
cubing in both sides
a^3=27q^3+54q^2+36q+8
a^3=9(3q^3+6q^2+4q)+8
let us assume tht 3q^3+6q^2+4q as m
a^3=9m+8
a=bq+r
Since 9 is a multiple of 3 we can take b as3
if b is 3 then r can take the values 0,1,2
When r=0
a=bq+r
a=3q+0
cubing on both sides
a^3=(3q)^3
a^3=27q^3
a^3=9×3q^3
Let us assume 3q^3 =m
a^3=9m
When r=1
a=3q+1
cubing on both the sides
a^3=(3q+1)^3
(a+b)^3=a^3+3a^2b+3ab^2+b^3
a^3=27q^3+27q^2+9q+1
a^3=9(3q^3+3q^2+q)+1
let us assume 3q^3+3q^2+q be m
a^3=9m+1
When r=2
a=3q+2
cubing in both sides
a^3=27q^3+54q^2+36q+8
a^3=9(3q^3+6q^2+4q)+8
let us assume tht 3q^3+6q^2+4q as m
a^3=9m+8
Similar questions