Math, asked by ItzPureHeartLady, 1 month ago

See the question of trignometryin photo and please

it ​

Attachments:

Answers

Answered by subhrajeetp1
1

I am not a jee student. but whatever I know I did . hope it helps.

Attachments:
Answered by SparklingBoy
29

《¤¤¤¤¤¤¤¤¤¤¤¤¤¤》

▪Answer :-

 \bf \large \green{2\pi}

___________________________

▪Given :-

S = { θ ∈ [-2π,2π] : 2cos²θ + 3sinθ = 0 }.

___________________________

▪To Calculate :-

Sum of elements of S.

___________________________

▪Solution :-

 \sf \: We \:  have \:  \: \theta \in[ - 2\pi,2\pi]  \\  \\ \sf and \\  \\  \sf 2 {cos}^{2}  \theta + 3sin\theta = 0 \\  \\   \sf\implies 2(1 -  {sin}^{2} \theta )+ 3sin\theta = 0 \\  \\  \implies \sf 2 - 2 {sin}^{2} \theta + 3sin\theta = 0  \\  \\  \bf \implies2 {sin}^{2} \theta - 3sin\theta  - 2 = 0

Which is quadratic equation in sinθ.

《Solving the equation》

\sf \implies2 {sin}^{2} \theta - 3sin\theta  - 2 = 0 \\  \\  \implies  \sf 2 {sin}^{2}\theta - 4sin \theta + sin\theta  -  = 0\\  \\  \implies \sf 2sin \theta(sin \theta - 2) + 1(sin \theta - 2)\\  \\  \implies  \sf(2sin \theta  + 1)(sin\theta - 2) = 0 \\  \\  \implies   \colorbox{lime}{ \bf \underline{  \boxed{ \bf sin\theta =  -  \frac{1}{2} }}} \:  \:  \:  \:  \{  \bf\because sin\theta \ne2 \}

As θ ∈ [-2π,2π]

So,

 \sf\theta = 2\pi -  \frac{\pi}{6} \\ or \\ \sf \theta =  - \pi +  \frac{\pi}{6}  \\ or \\  \sf\theta =  \frac{ - \pi}{6 }  \\ or \\  \sf\theta =  \sf\pi +  \frac{\pi}{6}

Hence Sum of All Solutions :-

 \sf 2\pi -  \frac{\pi}{6}  +   - \pi +  \frac{\pi}{6} +   \frac{ - \pi}{6 }  + \sf\pi +  \frac{\pi}{6}  \\  \\   \huge \green{ = 2\pi}

   \red{\Large \mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required }} \\  \huge \red{ \mathfrak{ \text{ A}nswer.}}

___________________________

Similar questions