Math, asked by swatimanna2015, 6 months ago

see this pic..

A rectangular container is 50 cm long and 30 cm wide. It contains 7.5 L of water. What is
the height of the water level in the container?

I will follow you if you give me the right answer..

Attachments:

Answers

Answered by Anonymous
5

Answer:

Step-by-step explanation:

Have Given :-

Length of container = 50 cm.

Width of container = 30 cm.

∵ 1 L = 1 ×   {10}^{ - 3} \: m³

∴ 7.5  \: L = 75 \times  {10}^{ - 4}  \: m³

Since the container holds 75 × 10^-4 m³ of water.

∴ Volume of rectangular container = l × b × h

75  \times  {10}^{ - 4} = 50 × 30 × h

75 \times  {10}^{ - 4}  = 1500 × h

 \frac{75 \times  {10}^{ - 4} }{15 \times  {10}^{2} }  = h

\frac{ \cancel{75} \times  {10}^{ - 4}  \times  {10}^{2} }{  \cancel{15}}  = h

 \frac{5  \times  {10}^{ - 4 + 2} }{1}  = h

5 \times  {10}^{ - 2}  = h

0.05 \: m = h

or \:  \: h =  0.05 \: m

h = 5 \: cm

Therefore, the height of the water level will be 5 cm.

Answered by Anonymous
8

Answer:

Step-by-step explanation:

Have Given :-

Length of container = 50 cm.

Width of container = 30 cm.

∵ 1 L = 1 ×   {10}^{ - 3} \: m³

∴ 7.5  \: L = 75 \times  {10}^{ - 4}  \: m³

Since the container holds 75 × 10^-4 m³ of water.

∴ Volume of rectangular container = l × b × h

75  \times  {10}^{ - 4} = 50 × 30 × h

75 \times  {10}^{ - 4}  = 1500 × h

 \frac{75 \times  {10}^{ - 4} }{15 \times  {10}^{2} }  = h

\frac{ \cancel{75} \times  {10}^{ - 4}  \times  {10}^{2} }{  \cancel{15}}  = h

 \frac{5  \times  {10}^{ - 4 + 2} }{1}  = h

5 \times  {10}^{ - 2}  = h

0.05 \: m = h

or \:  \: h =  0.05 \: m

h = 5 \: cm

Therefore, the height of the water level will be 5 cm.

Answered by Anonymous
6

Answer:

Step-by-step explanation:

Have Given :-

Length of container = 50 cm.

Width of container = 30 cm.

∵ 1 L = 1 ×   {10}^{ - 3} \: m³

∴ 7.5  \: L = 75 \times  {10}^{ - 4}  \: m³

Since the container holds 75 × 10^-4 m³ of water.

∴ Volume of rectangular container = l × b × h

75  \times  {10}^{ - 4} = 50 × 30 × h

75 \times  {10}^{ - 4}  = 1500 × h

 \frac{75 \times  {10}^{ - 4} }{15 \times  {10}^{2} }  = h

\frac{ \cancel{75} \times  {10}^{ - 4}  \times  {10}^{2} }{  \cancel{15}}  = h

 \frac{5  \times  {10}^{ - 4 + 2} }{1}  = h

5 \times  {10}^{ - 2}  = h

0.05 \: m = h

or \:  \: h =  0.05 \: m

h = 5 \: cm

Therefore, the height of the water level will be 5 cm.

Answered by Anonymous
6

Answer:

Step-by-step explanation:

Have Given :-

Length of container = 50 cm.

Width of container = 30 cm.

∵ 1 L = 1 ×   {10}^{ - 3} \: m³

∴ 7.5  \: L = 75 \times  {10}^{ - 4}  \: m³

Since the container holds 75 × 10^-4 m³ of water.

∴ Volume of rectangular container = l × b × h

75  \times  {10}^{ - 4} = 50 × 30 × h

75 \times  {10}^{ - 4}  = 1500 × h

 \frac{75 \times  {10}^{ - 4} }{15 \times  {10}^{2} }  = h

\frac{ \cancel{75} \times  {10}^{ - 4}  \times  {10}^{2} }{  \cancel{15}}  = h

 \frac{5  \times  {10}^{ - 4 + 2} }{1}  = h

5 \times  {10}^{ - 2}  = h

0.05 \: m = h

or \:  \: h =  0.05 \: m

h = 5 \: cm

Therefore, the height of the water level will be 5 cm.

Answered by Anonymous
6

Answer:

Step-by-step explanation:

Have Given :-

Length of container = 50 cm.

Width of container = 30 cm.

∵ 1 L = 1 ×   {10}^{ - 3} \: m³

∴ 7.5  \: L = 75 \times  {10}^{ - 4}  \: m³

Since the container holds 75 × 10^-4 m³ of water.

∴ Volume of rectangular container = l × b × h

75  \times  {10}^{ - 4} = 50 × 30 × h

75 \times  {10}^{ - 4}  = 1500 × h

 \frac{75 \times  {10}^{ - 4} }{15 \times  {10}^{2} }  = h

\frac{ \cancel{75} \times  {10}^{ - 4}  \times  {10}^{2} }{  \cancel{15}}  = h

 \frac{5  \times  {10}^{ - 4 + 2} }{1}  = h

5 \times  {10}^{ - 2}  = h

0.05 \: m = h

or \:  \: h =  0.05 \: m

h = 5 \: cm

Therefore, the height of the water level will be 5 cm.

Answered by Anonymous
6

Answer:

Step-by-step explanation:

Have Given :-

Length of container = 50 cm.

Width of container = 30 cm.

∵ 1 L = 1 ×   {10}^{ - 3} \: m³

∴ 7.5  \: L = 75 \times  {10}^{ - 4}  \: m³

Since the container holds 75 × 10^-4 m³ of water.

∴ Volume of rectangular container = l × b × h

75  \times  {10}^{ - 4} = 50 × 30 × h

75 \times  {10}^{ - 4}  = 1500 × h

 \frac{75 \times  {10}^{ - 4} }{15 \times  {10}^{2} }  = h

\frac{ \cancel{75} \times  {10}^{ - 4}  \times  {10}^{2} }{  \cancel{15}}  = h

 \frac{5  \times  {10}^{ - 4 + 2} }{1}  = h

5 \times  {10}^{ - 2}  = h

0.05 \: m = h

or \:  \: h =  0.05 \: m

h = 5 \: cm

Therefore, the height of the water level will be 5 cm.

Similar questions