Math, asked by ItzMissPayal, 5 hours ago

seee the attachment

answer mi it's veryurgent don't smap okk​

Attachments:

Answers

Answered by mathdude500
16

Given Question

A person borrows ₹ 3000 and agrees to pay with a total interest of ₹ 480 in 12 monthly instâllment. Each instâllment being more than the preceeding one by ₹ 40. Find the amount of first instâllment and last instâllment.

\large\underline{\sf{Solution-}}

Given that

A person borrows ₹ 3000 and agrees to pay with a total interest of ₹ 480 in 12 monthly instâllment. Each instâllment being more than the preceeding one by ₹ 40.

So, Let assume that

First instâllment be ₹ x

Second instâllment be ₹ x + 40

Third instâllment be ₹ x + 80

This implies, sequence of instâllment form an Arithmetic sequence with First term x and common difference 40.

Now, Amount to be paid in 12 instâllment = ₹ 3480

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

So, here we have

 \purple{\rm :\longmapsto\:a = x}

 \purple{\rm :\longmapsto\:d= 40}

 \purple{\rm :\longmapsto\:n= 12}

 \purple{\rm :\longmapsto\:S_n= 3480}

So, on substituting the values, we get

\rm :\longmapsto\:3480 = \dfrac{12}{2} \bigg(2x + (12 - 1)40 \bigg)

\rm :\longmapsto\:3480 = 6 \bigg(2x + 440 \bigg)

\rm :\longmapsto\:580 =   2x + 440

\rm :\longmapsto\:580  - 440=   2x

\rm :\longmapsto\:2x = 140

\bf\implies \:x = 70

So, Amount of first instâllment = ₹ 70

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

 \purple{\rm :\longmapsto\:a_{12}}

\rm \:  =  \: a + (12 - 1)d

\rm \:  =  \: a + 11d

\rm \:  =  \: 70+ 11 \times 40

\rm \:  =  \: 70+ 440

\rm \:  =  \: 510

Hence,

\begin{gathered}\begin{gathered}\bf\: \bf\implies \:Amount \: of \: \begin{cases} &\sf{ {1}^{st} \: instâllment = 70 } \\  \\ &\sf{ {12}^{th} \: instâllment = 510} \end{cases}\end{gathered}\end{gathered}

Answered by Ayushsf2hindustan
2

Answer:

  • 1st ínstäľľment = 70
  • Last ínstäľľment = 510

Step-by-step explanation:

Prefer the attachment

Attachments:
Similar questions