Math, asked by surilishenoy, 3 months ago

Seg AD is a median of ∆ABC and point G is its centroid. If A ≡ (-3 , -1) and G ≡ (1 , -1). Find the coordinates of point D.

Answers

Answered by Anonymous
2

GiveN:-

Segment AD is a median of ∆ABC and point G is its centroid. If A(-3 , -1) and G(1 , -1).

To FinD:-

The coordinates of point D.

SolutioN:-

Analysis :

First we have to understand the question. As we are given the median of a triangle and the centroid of the median and asked to find the coordinates of one of the point of the median we will be using the mid point formula.

Solution :

Let the coordinates of point D be (x, y).

  • (x₁, y₁) = A(-3, -1)
  • (x₂, y₂) = D(x, y)
  • (x, y) = G(1, -1)

By using mid point formula,

\normalsize{\pink{\underline{\boxed{\bf{(x,y)=\bigg\lgroup\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\bigg\rgroup}}}}}

The "x" of point D :

 \\ :\normalsize\implies{\sf{x=\dfrac{x_1+x_2}{2}}}

where,

  • x₁ = -3
  • x₂ = x
  • x = 1

Putting the values,

 \\ :\normalsize\implies{\sf{1=\dfrac{-3+y}{2}}}

 \\ :\normalsize\implies{\sf{1\times2=-3+y}}

 \\ :\normalsize\implies{\sf{2=-3+y}}

 \\ :\normalsize\implies{\sf{2+3=y}}

 \\ :\normalsize\implies{\sf{5=x}}

 \\ \normalsize\therefore\boxed{\bf{\pink{x_2=5.}}} \\ \\

The "y" of point D :

 \\ :\normalsize\implies{\sf{x=\dfrac{y_1+y_2}{2}}}

where,

  • y₁ = -1
  • y₂ = y
  • y = -1

Putting the values,

 \\ :\normalsize\implies{\sf{-1=\dfrac{-1+x}{2}}}

 \\ :\normalsize\implies{\sf{-1\times2=-1+x}}

 \\ :\normalsize\implies{\sf{-2=-1+x}}

 \\ :\normalsize\implies{\sf{-2+1=x}}

 \\ :\normalsize\implies{\sf{-1=x}}

 \\ \normalsize\therefore\boxed{\bf{\pink{y_2=-1.}}} \\ \\

VerificatioN:-

 \\ :\normalsize\implies{\sf{(x,y)=\bigg\lgroup\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\bigg\rgroup}}

where,

  • x = 1
  • y = -1
  • x₁ = -3
  • x₂ = 5
  • y₁ = -1
  • y₂ = -1

Putting the values,

\\ :\normalsize\implies{\sf{(1,-1)=\bigg\lgroup\dfrac{-3+5}{2},\dfrac{-1+(-1)}{2}\bigg\rgroup}}

\\ :\normalsize\implies{\sf{(1,-1)=\bigg\lgroup\dfrac{-3+5}{2},\dfrac{-1-1}{2}\bigg\rgroup}}

\\ :\normalsize\implies{\sf{(1,-1)=\bigg\lgroup\dfrac{2}{2},\dfrac{-2}{2}\bigg\rgroup}}

\\ :\normalsize\implies{\sf{(1,-1)=\bigg\lgroup\cancel{\dfrac{2}{2}},\cancel{\dfrac{-2}{2}}\bigg\rgroup}}

\\ :\normalsize\implies{\sf{(1,-1)=(1,-1)}}

 \\ \normalsize\therefore\boxed{\bf{LHS=RHS.}}

  • Hence verified.

The coordinates of point D is (5, -1) .

(for more reference refer to the attachment).

Attachments:

surilishenoy: Thanks!
Similar questions