Math, asked by niranjanask1812, 5 months ago

Select the correct alternative
from the given choices. the sum of the numerator and the denominator of a positive proper fraction is 9. if 4 is added to twice
the numrator and 5 is subracted from 4 times
the denominator then the fraction remains the same. the fraction is​

Answers

Answered by EliteZeal
24

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

\large\underline{\green{\bf Given :-}}

 \:\:

  • The sum of the numerator and the denominator of a positive proper fraction is 9

 \:\:

  • If 4 is added to twice the numerator and 5 is subtracted from 4 times the denominator then the fraction remains the same

 \:\:

\large\underline{\red{\bf To \: Find :-}}

 \:\:

  • The original fraction

 \:\:

\large\underline{\orange{\bf Solution :-}}

 \:\:

  • Let the numerator be "n"

  • Let the denominator be "d"

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

The sum of the numerator and the denominator of a positive proper fraction is 9

 \:\:

➜ n + d = 9

 \:\:

➜ n = 9 - d ⚊⚊⚊⚊ ⓵

 \:\:

 \underline{\bold{\texttt{Original fraction :}}}

 \:\:

 \sf \dfrac { n } { d }

 \:\:

 \underline{\bold{\texttt{New numerator :}}}

 \:\:

If 4 is added to twice the numerator

 \:\:

➠ 2n + 4

 \:\:

 \underline{\bold{\texttt{New denominator :}}}

 \:\:

5 is subtracted from 4 times the denominator

 \:\:

➠ 4d - 5

 \:\:

Given that if 4 is added to twice the numerator and 5 is subtracted from 4 times the denominator then the fraction remains the same

 \:\:

 \sf \dfrac {2n + 4 } { 4d - 5 } = \dfrac { n } { d } ⚊⚊⚊⚊ ⓶

 \:\:

Putting n = 9 - d from ⓵ to ⓶

 \:\:

 \sf \dfrac {2(9 - d) + 4 } { 4d - 5 } = \dfrac { 9 - d} { d }

 \:\:

 \sf \dfrac { 18 - 2d + 4 } { 4d - 5 } = \dfrac { 9 - d } { d }

 \:\:

 \sf \dfrac { 22 - 2d } { 4d - 5 } = \dfrac { 9 - d } { d }

 \:\:

➜ (9 - d)(4d - 5) = (22 - 2d)(d)

 \:\:

➜ 36d - 45 - 4d² + 5d = 22d - 2d²

 \:\:

➜ 4d² - 2d² + 22d - 36d - 5d + 45 = 0

 \:\:

➜ 2d² - 19d + 45 = 0

 \:\:

Solving quadratic equation

 \:\:

For a quadratic equation in general form :

 \:\:

➠ ax² + bx + c = 0

 \:\:

Roots can be form by :

 \:\:

 \sf \dfrac { - b \pm \sqrt { b ^2 - 4ac } } { 2a } ⚊⚊⚊⚊ ⓷

 \:\:

For our equation 2d² - 19d + 45 = 0

 \:\:

We have ,

 \:\:

  • a = 2

  • b = - 19

  • c = 45

 \:\:

Putting these values in ⓷

 \:\:

 \sf \dfrac { - b \pm \sqrt { b ^2 - 4ac } } { 2a }

 \:\:

 \sf \dfrac { - (-19) \pm \sqrt { 19^2 - 4(2)(45)} } { 2(2)}

 \:\:

 \sf \dfrac { 19\pm \sqrt { 361 - 360} } { 4}

 \:\:

 \sf \dfrac { 19\pm \sqrt { 1} } { 4}

 \:\:

 \sf \dfrac { 19\pm 1} { 4}

 \:\:

Roots are ;

 \:\:

 \sf \dfrac { 19 + 1} { 4}

 \:\:

 \sf \dfrac { 20} { 4}

 \:\:

➜ d = 5 ⚊⚊⚊⚊ ⓸

 \:\:

Or

 \:\:

 \sf \dfrac { 19 - 1} { 4}

 \:\:

 \sf \dfrac { 18} { 4}

 \:\:

➜ d = 4.5 ⚊⚊⚊⚊ ⓹

 \:\:

From ⓸ & ⓹ we get the value of d is either 5 or 4.5

 \:\:

We will take the value as 5 because given that the fraction is a proper fraction

 \:\:

  • Hence the denominator is 5

 \:\:

Putting d = 5 from ⓸ to ⓵

 \:\:

➜ n = 9 - d

 \:\:

➜ n = 9 - 5

 \:\:

➨ n = 4

 \:\:

  • Hence the numerator is 4

 \:\:

 \underline{\bold{\texttt{Original fraction :}}}

 \:\:

 \sf \dfrac { 4 } { 5 }

 \:\:

═════════════════════════


Glorious31: Fantastic!
Similar questions