Math, asked by nithin7933, 2 months ago

Select the correct answer
The area of the triangle formed by origin O and the two points A and B given by à = i + 25 + 3k and b= -31 - 2j + k respectively is,

Answers

Answered by MaheswariS
17

\underline{\textbf{Given:}}

\mathsf{In\;\triangle\;OAB,}

\mathsf{\overrightarrow{OA}=\overrightarrow{a}=\overrightarrow{i}+2\overrightarrow{j}+3\overrightarrow{K}}

\mathsf{\overrightarrow{OB}=\overrightarrow{b}=-3\overrightarrow{i}-2\overrightarrow{j}+\overrightarrow{K}}

\underline{\textbf{To find:}}

\textsf{Area of triangle OAB}

\underline{\textbf{Solution:}}

\underline{\textsf{Concept used:}}

\boxed{\mathsf{Area\;of\;triangle\;having\;two\;sides\;\overrightarrow{a}\;and\;\overrightarrow{b}=\dfrac{1}{2}|\overrightarrow{a}{\times}\overrightarrow{b}|}}

\mathsf{\overrightarrow{a}{\times}\overrightarrow{b}}

\mathsf{=\left|\begin{array}{ccc}\overrightarrow{i}&\overrightarrow{j}&\overrightarrow{k}\\1&2&3\\-3&-2&1\end{array}\right|}

\mathsf{=(2+6)\overrightarrow{i}-(1+9)\overrightarrow{j}+(-2+6)\overrightarrow{k}}

\mathsf{=8\overrightarrow{i}-10\overrightarrow{j}+4\overrightarrow{k}}

\mathsf{=2(4\overrightarrow{i}-5\overrightarrow{j}+2\overrightarrow{k})}

\implies\mathsf{|\overrightarrow{a}{\times}\overrightarrow{b}|=2\sqrt{4^2+(-5)^2+2^2}}

\implies\mathsf{|\overrightarrow{a}{\times}\overrightarrow{b}|=2\sqrt{16+25+4}}

\implies\mathsf{|\overrightarrow{a}{\times}\overrightarrow{b}|=2\sqrt{45}}

\implies\mathsf{|\overrightarrow{a}{\times}\overrightarrow{b}|=6\sqrt{5}}

\mathsf{Now,}

\underrline{\textsf{Area of triangle OAB}}

\mathsf{=\dfrac{1}{2}|\overrightarrow{a}{\times}\overrightarrow{b}|}

\mathsf{=\dfrac{1}{2}(6\sqrt{5})}

\mathsf{=3\sqrt{5}\;square\;units}

Answered by lekkalanehal
1

Answer:

3√5

Hope it is helpful to you

Similar questions