Math, asked by karan1268, 9 months ago

selling price of a commodity is rupee 15,600 .the profit earned is 30%.find.a cp and b profit earned

Answers

Answered by TheProphet
22

Solution :

\underline{\bf{Given\::}}}}

  • Selling price of a commodity = Rs.15600
  • Profit earned = 30%

\underline{\bf{To\:find\::}}}}

The cost price & profit earned.

\underline{\bf{Explanation\::}}}}

\bigstar using formula of the Cost price when gained :

\boxed{\bf{C.P.=\frac{100}{(100+gain\%)} \times S.P.}}}}

\longrightarrow\sf{C.P.=\dfrac{100}{100+30} \times 15600}\\\\\\\longrightarrow\sf{C.P.=\dfrac{100}{\cancel{130}} \times\cancel{ 15600}}\\\\\\\longrightarrow\sf{C.P.=Rs.(100\times 120)}\\\\\longrightarrow\bf{C.P.=Rs.12000}

Now;

We know that formula of the profit :

\longrightarrow\sf{Profit=Selling\:price-Cost\:price}\\\\\longrightarrow\sf{Profit=Rs.15600-Rs.12000}\\\\\longrightarrow\bf{Profit=Rs.3600}

Answered by BrainlyPopularman
41

GIVEN :

Selling price = 15,600 rupees

• Earned profit = 30 %

TO FIND :

(a) Cost price = ?

(b) Earned profit = ?

SOLUTION :

  \\ \longrightarrow \large { \boxed{ \bold{Cost \:  \: price = Selling \:  \: price \:  \:   \pm \: Loss/Profit \: Money}}} \\

• Let Cost price = 'x'

Profit on cost price –

  \\ \implies  { \bold{Profit = \dfrac{x  \times 30}{100} }} \\

• So that –

  \\ \implies  { \bold{x = 15600 -  \dfrac{x  \times 30}{100} }} \\

  \\ \implies  { \bold{x + \dfrac{30x}{100} = 15600 }} \\

  \\ \implies  { \bold{\dfrac{130x}{100} = 15600 }} \\

  \\ \implies  { \bold{x=  \dfrac{15600  \times 100}{130}}} \\

  \\ \implies  { \bold{x=  \dfrac{1560000}{130}}} \\

  \\ \implies  {{ \bold{x=  12,000}}} \\

  \\ \implies \large { \boxed { \bold{Cost \:  \: price=  12,000 \: \:  \:  Rs}}} \\

• Now Profit –

  \\ \implies  { \bold{Profit = \dfrac{12,000 \times 30}{100} }} \\

  \\ \implies  { \bold{Profit = \dfrac{360000}{100} }} \\

  \\ \implies \large {\boxed { \bold{Profit = 3,600 \:  \: rs}}} \\

Similar questions