Semi vertical angle of a right circular cone formula
Answers
Answered by
1
Area =πrl+πr2πrl+πr2V=13V=13πr2hπr2h
Step 1:
Let rr be the radius ll be the slant height and hh be the vertical height of a cone of semi-vertical angle αα
Surface area S=πrl+πr2S=πrl+πr2------(1)
l=S−πr2πrl=S−πr2πr
The volume of the cone V=13V=13πr2hπr2h
=13=13πr2l2−r2−−−−−√πr2l2−r2
=πr23=πr23(S−πr2)2π2r2−r2−−−−−−−−−−−−√(S−πr2)2π2r2−r2
=πr23=πr23(S−πr2)2−π2r4π2r2−−−−−−−−−−−√(S−πr2)2−π2r4π2r2
=πr23=πr23S2−2πSr2+π2r4−π2r4−−−−−−−−−−−−−−−−−−√πrS2−2πSr2+π2r4−π2r4πr
=r3=r3S2−2πSr2+π2r4−π2r4−−−−−−−−−−−−−−−−−−−−−√S2−2πSr2+π2r4−π2r4
=r3=r3S(S−2πr2)−−−−−−−−−−√
Step 1:
Let rr be the radius ll be the slant height and hh be the vertical height of a cone of semi-vertical angle αα
Surface area S=πrl+πr2S=πrl+πr2------(1)
l=S−πr2πrl=S−πr2πr
The volume of the cone V=13V=13πr2hπr2h
=13=13πr2l2−r2−−−−−√πr2l2−r2
=πr23=πr23(S−πr2)2π2r2−r2−−−−−−−−−−−−√(S−πr2)2π2r2−r2
=πr23=πr23(S−πr2)2−π2r4π2r2−−−−−−−−−−−√(S−πr2)2−π2r4π2r2
=πr23=πr23S2−2πSr2+π2r4−π2r4−−−−−−−−−−−−−−−−−−√πrS2−2πSr2+π2r4−π2r4πr
=r3=r3S2−2πSr2+π2r4−π2r4−−−−−−−−−−−−−−−−−−−−−√S2−2πSr2+π2r4−π2r4
=r3=r3S(S−2πr2)−−−−−−−−−−√
Answered by
1
Surface Area =πrl+πr2
V=13πr2h
***Step 1:
Let r be the radius l be the slant height and h be the vertical height of a cone of semi-vertical angle α
Surface area S=πrl+πr2------(1)
l=S−πr2πr
The volume of the cone V=13πr2h
=13πr2√l2−r2
=πr23√(S−πr2)2π2r2−r2
=πr23√(S−πr2)2−π2r4π2r2
=πr23√S2−2πSr2+π2r4−π2r4πr
=r3√S2−2πSr2+π2r4−π2r4
=r3√S(S−2πr2)
***Step 2:
V2=r29S(S−2πr2)
V2=S9(Sr2−2πr4)
dV2dr=S9[2Sr−8πr3]
d2V2dr2=S9[2S−24πr2]------(2)
Now dV2dr=0
⇒S9(2Sr−8πr3)=0
⇒(S−4πr2)=0
Putting S=4πr2 in (2)
d2Vdr2=S9[8πr2−24πr2]=−ve
⇒V is maximum when S=4πr2
***Step 3:
Putting the value in equ(1)
4πr2=πrl+πr2
4πr2−πr2=πrl
3πr2=πrl
3r2=rl
rl=13
sinα=13
l=sin−1(13)
Thus V is maximum when S=constant
α=sin−113
MAY THIS HELP U MY FRND!!!!
V=13πr2h
***Step 1:
Let r be the radius l be the slant height and h be the vertical height of a cone of semi-vertical angle α
Surface area S=πrl+πr2------(1)
l=S−πr2πr
The volume of the cone V=13πr2h
=13πr2√l2−r2
=πr23√(S−πr2)2π2r2−r2
=πr23√(S−πr2)2−π2r4π2r2
=πr23√S2−2πSr2+π2r4−π2r4πr
=r3√S2−2πSr2+π2r4−π2r4
=r3√S(S−2πr2)
***Step 2:
V2=r29S(S−2πr2)
V2=S9(Sr2−2πr4)
dV2dr=S9[2Sr−8πr3]
d2V2dr2=S9[2S−24πr2]------(2)
Now dV2dr=0
⇒S9(2Sr−8πr3)=0
⇒(S−4πr2)=0
Putting S=4πr2 in (2)
d2Vdr2=S9[8πr2−24πr2]=−ve
⇒V is maximum when S=4πr2
***Step 3:
Putting the value in equ(1)
4πr2=πrl+πr2
4πr2−πr2=πrl
3πr2=πrl
3r2=rl
rl=13
sinα=13
l=sin−1(13)
Thus V is maximum when S=constant
α=sin−113
MAY THIS HELP U MY FRND!!!!
Similar questions
History,
8 months ago
Geography,
8 months ago
Math,
1 year ago
Geography,
1 year ago
Computer Science,
1 year ago