Math, asked by harmantejani2006, 11 months ago

Send simply this question step by step

Attachments:

Answers

Answered by TheCommando
17

Question:

Simplify:-

 \sqrt{45}  - 3 \sqrt{20}  + 4 \sqrt{5}

Answer:

 \sqrt{5}

Solution:

Let us simplify them term-wise,

We know the factors of:

45 = 1, 3, 9, 15 and 45

20 = 1, 2, 4, 5 and 20

The numbers which are making perfect squares are 9 (3×3) and 4 (2×2).

 \sqrt{45}  =  \sqrt{3 \times 3 \times 5}  \\  \\  3\sqrt{20}  =  3\sqrt{2 \times 2 \times 5}

Now,

\implies\sqrt{45}  - 3 \sqrt{20}  + 4 \sqrt{5}  \\  \\\implies\sqrt{3 \times 3 \times 5}  - 3 \sqrt{2 \times 2 \times 5}  + 4 \sqrt{5}  \\  \\\implies 3 \sqrt{5}  - 6 \sqrt{5}  + 4 \sqrt{5}  \\  \\ \implies  \sqrt{5} (3 - 6 + 4) \\  \\ \implies  \sqrt{5} (1)  =  \sqrt{5}

Answered by AKStark
1

Step-by-step explanation:

GIVEN:

 \sqrt{45}  - 3 \sqrt{20}  + 4 \sqrt{5}

WORKING:

SIMPLIFY IT.

SOLUTION:

 \sqrt{45} = 3 \sqrt{5}   \\  \\ 3 \sqrt{20}  = 6 \sqrt{5}

NOW SIIMPLIFYING IT;

 \sqrt{45}  - 3 \sqrt{20}  + 4 \sqrt{5}  \\  \\  = 3 \sqrt{5}  - 6 \sqrt{5}  + 4 \sqrt{5}  \\  \\  = 7 \sqrt{5}  - 6 \sqrt{5}  =  \sqrt{5}

Similar questions