Math, asked by amber3, 1 year ago

send step by step solution

Attachments:

Answers

Answered by sivaprasath
3
Solution :

____________________________________________________________

Given :

a + b + c = 1,

a² + b² + c² = 9

a³ + b³ + c³ = 1

____________________________________________________________

To find :

The value of :

 \frac{1}{a} +  \frac{1}{b} +  \frac{1}{c}  = ?

____________________________________________________________

We know that,

we can also write,

 \frac{1}{a}= \frac{1}{a} ( \frac{bc}{bc})

 \frac{1}{a}= \frac{bc}{abc}

,

 \frac{1}{b}= \frac{1}{b} ( \frac{ac}{ac})

 \frac{1}{b}= \frac{ac}{abc}

&

 \frac{1}{c}= \frac{1}{c} ( \frac{ab}{ab})

 \frac{1}{a}= \frac{ab}{abc}

And hence,

 \frac{1}{a} +  \frac{1}{b} +  \frac{1}{c}

 \frac{bc}{abc} +  \frac{ac}{abc} +  \frac{ab}{abc}

 \frac{(ab + bc + ac)}{abc} ...(1)

________________________________

And so,

We also know that,

⇒ (a + b + c)² = a² + b² + c² + 2ab + 2ac + 2bc

⇒ (a + b + c)² = a² + b² + c² + 2(ab + bc + ac)

By, substituting the known values,

We get,

⇒ (1)² = 9 + 2(ab + bc + ac)

⇒ 1= 9 + 2(ab + bc + ac)

⇒ 1 - 9 = 2(ab + bc + ac)

⇒ -8 = 2 (ab + bc + ac)

⇒ ab + bc + ac = -8/2

⇒ ab + bc + ac = -4 ....(2)

_____________________

(a + b + c)³ = a³ + b³ + c³ + 3(a + b + c)(ab + bc + ac) - 3abc

⇒ (1)³ = 1 + 3(1)(-4) - 3abc

⇒ 1 = 1 - 12 - 3abc

⇒ 1 = - 11 - 3abc

⇒ 1 + 11 = - 3abc

⇒ 12 = -3abc

⇒ abc = 12/-3

⇒ abc = -4 ....(3)

___________________________________

 \frac{1}{a} +  \frac{1}{b} +  \frac{1}{c}

 \frac{(ab + bc + ac)}{abc}

 \frac{-4}{-4}

⇒ 1

         ⇒ ∴   \frac{1}{a} +  \frac{1}{b} +  \frac{1}{c} = 1

         ⇒ ∴ d) is correct,.

____________________________________________________________

                                    Hope it Helps !!

⇒ Mark as Brainliest,.

Swarup1998: Explanation is so impressive.
sivaprasath: thx,. Is it correct ?
Similar questions