Math, asked by genius155, 1 month ago

send the solution fast​

Attachments:

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \log_{2}( {x}^{2}  - 2x)  < 0

   \implies{x}^{2}  - 2x < {2}^{0}

   \implies{x}^{2}  - 2x < 1

   \implies{x}^{2}  - 2x  -  1 < 0

 \implies \:    \{x -  ( 1 -  \sqrt{2} ) \}\{x - (1 +  \sqrt{2} ) \} < 0 \\

 \implies \:     ( 1 -  \sqrt{2} ) < x  < (1 +  \sqrt{2}) \\

Also,

according to the defination of log,

 {x}^{2}  - 2x > 0

 \implies \: x(x  - 2) > 0

 \implies \: x \in( -  \infty, 0) \:  \cup \: (2, \infty )

So,

 \tt  \red{x \in(1 -  \sqrt{2},0) \:  \cup  \: (2 ,1 +  \sqrt{2} ) }

Answered by mathdude500
6

\large\underline{\sf{Given \:Question - }}

The solution set of Logarithmic inequality is

\rm :\longmapsto\: log_{2}( {x}^{2}  - 2x)  < 0

\large\underline{\sf{Solution-}}

The given Logarithmic inequality is

\rm :\longmapsto\: log_{2}( {x}^{2}  - 2x)  < 0

Let first define the domain of the above function.

We know,

\boxed{ \rm \:logx \: is \: defined \: when \: x > 0}

So,

\rm :\longmapsto\: {x}^{2} - 2x > 0

\rm :\longmapsto\:x(x - 2)  > 0

\bf\implies \:x < 0 \:  \: or \:  \: x > 2

\bf\implies \:x \:  \in \: ( -  \infty , \: 0) \:  \cup \:  (2,  \: \infty ) -  - (1)

Now,

\rm :\longmapsto\: log_{2}( {x}^{2}  - 2x)  < 0

\rm :\longmapsto\: {x}^{2} - 2x <  {2}^{0}

\rm :\longmapsto\: {x}^{2} - 2x <  1

\rm :\longmapsto\: {x}^{2} - 2x - 1  < 0

\rm :\longmapsto\: {x}^{2} - (1 + 1)x - 1  < 0

\rm :\longmapsto\: {x}^{2} - (1 + 1 +  \sqrt{2}  -  \sqrt{2} )x - (2 - 1)  < 0

\rm :\longmapsto\: {x}^{2} - (\sqrt{2} + 1 + 1- \sqrt{2} )x - ( {( \sqrt{2}) }^{2}  - 1)  < 0

\rm :\longmapsto\: {x}^{2} - ( \sqrt{2} + 1)x + ( \sqrt{2} - 1)x - ( \sqrt{2} + 1)( \sqrt{2} - 1)  < 0

\rm :\longmapsto\:x(x -  \sqrt{2} - 1) + ( \sqrt{2} - 1)(x -  \sqrt{2} - 1) < 0

\rm :\implies\:(x - 1 -  \sqrt{2})(x +  \sqrt{2} - 1) < 0

\rm :\implies\:1 -  \sqrt{2} < x < 1 +  \sqrt{2}

\bf\implies \:x \:  \in \: \bigg(1 -  \sqrt{2}, \: 1 +  \sqrt{2} \bigg)  -  -  - (2)

From equation (1) and (2), we concluded that

\bf\implies \:x \:  \in \: \bigg(1 -  \sqrt{2}, \: 0\bigg)  \:  \cup \: \bigg(2, \: 1 +  \sqrt{2} \bigg)

Result used :-

If a < b, then

\boxed{ \rm \:(x - a)(x - b) &lt; 0 \:  \: \bf\implies \:a &lt; x &lt; b}

\boxed{ \rm \:(x - a)(x - b) &gt; 0 \:  \: \bf\implies \:x &lt; a \:  \: or \:  \: x &gt; b}

\boxed{ \rm \: log_{x}(y)  &lt;  z, \: and \: x &gt; 1 \: then \: y  &lt;  {x}^{z}}

Similar questions