Math, asked by Yashmk, 1 year ago

Separate the real & imaginary part
Sec(x+iy)

Answers

Answered by sarthakk24
1

Step-by-step explanation:

sec(x+iy)=cosec[90-(x+iy)]

comparing the equation

x+iy=90-x-iy

2(iy)=90-2x

iy=2(45-x)÷2

I=45-x÷y

Answered by harendrachoubay
20

Real part = \dfrac{2\cos x\cos hy}{\cos 2x+\cosh 2y} and Imaginary part = \dfrac{2\sin x\sin hy}{\cos 2x+\cosh 2y}

Step-by-step explanation:

We have,

\sec(x+iy)

To separate the real and imaginary part of \sec(x+iy) = ?

\sec(x+iy)

=\dfrac{1}{\cos(x+iy)}

Rationalising numerator and denominator, we get

=\dfrac{1}{2\cos(x+iy)}\times \dfrac{2\cos(x-iy)}{\cos(x-iy)}

=\dfrac{2(\cos x\cos iy+\sin x\sin iy)}{\cos 2x+\cos 2iy}

Using the trigonometric identity,

\cos (A-B)=\cos A\cos B+\sin A\sin B

=\dfrac{2(\cos x\cos hy+i\sin x\sin hy)}{\cos 2x+\cosh 2y}

Separating real and imaginary part, we get

=\dfrac{2\cos x\cos hy}{\cos 2x+\cosh 2y} +i\dfrac{2\sin x\sin hy}{\cos 2x+\cosh 2y}

∴ Real part = \dfrac{2\cos x\cos hy}{\cos 2x+\cosh 2y} and

Imaginary part = \dfrac{2\sin x\sin hy}{\cos 2x+\cosh 2y}

Similar questions