Math, asked by Anonymous, 1 month ago

Sequence and series question given in image solve please both question.

Attachments:

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-114}}

We know, the general HP series is given by

\rm :\longmapsto\:\boxed{ \tt{ \:  \frac{1}{a}, \:  \frac{1}{a + d}, \:  \frac{1}{a + 2d}, -  -  -  -  \: }}

and

↝ nᵗʰ term of an harmonic progression is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:= \frac{1}{\:a\:+\:(n\:-\:1)\:d} }}}}}} \\ \end{gathered}

So, According to statement, the given HP series is

\rm :\longmapsto\:2,\: 2\dfrac{1}{2},3 \dfrac{1}{3}, -  -  -  -

So, here,

\rm :\longmapsto\:\dfrac{1}{a}  = 2 \:  \: \rm \implies\:a =  \dfrac{1}{2}

and

\rm :\longmapsto\:\dfrac{1}{a + d}  =2 \dfrac{1}{2}

\rm :\longmapsto\:\dfrac{1}{a + d}  = \dfrac{5}{2}

\rm \implies\:a + d = \dfrac{2}{5}

\rm \implies\: \dfrac{1}{2}  + d = \dfrac{2}{5}

\rm :\longmapsto\:d = \dfrac{2}{5}  - \dfrac{1}{2}

\rm :\longmapsto\:d = \dfrac{4 - 5}{10}

\rm :\longmapsto\:d = \dfrac{ - 1}{10}

\bf\implies \:d =  -  \: \dfrac{1}{10}

Hence,

\rm :\longmapsto\:a_5 \: of \: HP \: is

\rm \:  =  \:\dfrac{1}{a + 4d}

\rm \:  =  \:\dfrac{1}{\dfrac{1}{2} -  4 \times \dfrac{1}{10} }

\rm \:  =  \:\dfrac{1}{\dfrac{1}{2} -  \dfrac{2}{5} }

\rm \:  =  \:\dfrac{1}{\dfrac{5 - 4}{10}  }

\rm \:  =  \:\dfrac{1}{\dfrac{1}{10}  }

\rm \:  =  \:10

\rm \implies\:\boxed{ \tt{ \: \:a_5 \: of \: HP \:  =  \: 10 \: }}

  • Hence, Option (d) is correct.

 \red{\large\underline{\sf{Solution-115}}}

According to statement,

\rm :\longmapsto\:a_7 =  \dfrac{1}{10}

\rm :\longmapsto\:\dfrac{1}{a + 6d}  = \dfrac{1}{10}

\rm \implies\:a + 6d = 10 -  -  -  - (1)

Also, given that

\rm :\longmapsto\:a_{12} =  \dfrac{1}{25}

\rm :\longmapsto\:\dfrac{1}{a + 11d}  = \dfrac{1}{25}

\rm \implies\:a + 11d = 25 -  -  -  - (2)

On Subtracting equation (1) from equation (2), we get

\rm :\longmapsto\:5d = 15

\bf\implies \:d \:  =  \: 3

On substituting d = 3, in equation (1), we get

\rm :\longmapsto\:a + 6d = 10

\rm :\longmapsto\:a + 6(3) = 10

\rm :\longmapsto\:a + 18 = 10

\bf\implies \:a \:  =  \:  -  \: 8

Hence,

\rm :\longmapsto\:a_{20} \: of \: HP \: is

\rm \:  =  \:\dfrac{1}{a + 19d}

\rm \:  =  \:\dfrac{1}{ - 8 + 19(3)}

\rm \:  =  \:\dfrac{1}{ - 8 + 57}

\rm \:  =  \:\dfrac{1}{49}

Thus,

\rm \implies\:\boxed{ \tt{ \: \:a_{20} \: of \: HP \:  =  \:  \frac{1}{49}  \: }}

  • So, option (d) is correct

Additional Information :-

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

↝ nᵗʰ term of an geometric sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\: {ar}^{n - 1} }}}}}} \\ \end{gathered}

↝ nᵗʰ term of an harmonic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:= \frac{1}{\:a\:+\:(n\:-\:1)\:d} }}}}}} \\ \end{gathered}

Similar questions