Computer Science, asked by vaibhavisingh344, 2 months ago

Sequence the steps of validation of content by placing proper step numbers.
a. Check whether the points included are correct or not.
b. Refer to various sources to know more about the topic.
c. Check spelling and grammar of the final slide.
d. Check whether all the relevant points are included in the presentation or not.
e. Add the missing points in the presentation.
f. Take notes in brief.​

Answers

Answered by natvarbaraiya77
0

Explanation:

Topic :- This is your punishment for spamming in my question

Differentiation

To Differentiate :-

f(x)=\cot x \cdot \ln \sec xf(x)=cotx⋅lnsecx

Solution :-

f(x)=\cot x \cdot \ln \sec xf(x)=cotx⋅lnsecx

\dfrac{d(f(x))}{dx}=\dfrac{d(\cot x \cdot \ln \sec x)}{dx}

dx

d(f(x))

=

dx

d(cotx⋅lnsecx)

\dfrac{d(f(x))}{dx}=\ln \sec x\cdot\dfrac{d(\cot x )}{dx}+\cot x\cdot\dfrac{d(\ln\sec x )}{dx}

dx

d(f(x))

=lnsecx⋅

dx

d(cotx)

+cotx⋅

dx

d(lnsecx)

\left(\because \dfrac{d(fg)}{dx}=g\cdot \dfrac{d(f)}{dx}+f\cdot\dfrac{d(g)}{dx} \right)(∵

dx

d(fg)

=g⋅

dx

d(f)

+f⋅

dx

d(g)

)

\dfrac{d(f(x))}{dx}=\ln \sec x\cdot(-\csc^2x)+\cot x\cdot\dfrac{d(\ln\sec x )}{dx}

dx

d(f(x))

=lnsecx⋅(−csc

2

x)+cotx⋅

dx

d(lnsecx)

\left(\because \dfrac{d(\cot x)}{dx}=-\csc^2x \right)(∵

dx

d(cotx)

=−csc

2

x)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+\cot x\cdot\dfrac{1}{\sec x}\cdot\dfrac{d(\sec x )}{dx}

dx

d(f(x))

=−csc

2

x⋅lnsecx+cotx⋅

secx

1

dx

d(secx)

\left(\because \dfrac{d(\ln t)}{dx}=\dfrac{1}{t}\cdot\dfrac{dt}{dx} \right)(∵

dx

d(lnt)

=

t

1

dx

dt

)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+\cot x\cdot\dfrac{1}{\sec x}\cdot \sec x\cdot \tan x

dx

d(f(x))

=−csc

2

x⋅lnsecx+cotx⋅

secx

1

⋅secx⋅tanx

\left(\because \dfrac{d(\sec x)}{dx}=\sec x\cdot \tan x \right)(∵

dx

d(secx)

=secx⋅tanx)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+(\cot x\cdot\tan x)\cdot\left (\dfrac{1}{\cancel{\sec x}}\cdot \cancel{\sec x}\right)

dx

d(f(x))

=−csc

2

x⋅lnsecx+(cotx⋅tanx)⋅(

secx

1

secx

)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+1

dx

d(f(x))

=−csc

2

x⋅lnsecx+1

(\because \cot x \cdot \tan x = 1)(∵cotx⋅tanx=1)

Answer :-

\underline{\boxed{\dfrac{d(f(x))}{dx}=1-\csc^2x \cdot\ln \sec x}}

dx

d(f(x))

=1−csc

2

x⋅lnsecx

Note : csc x = cosec x

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{ANSWER}}}

ANSWER

Correct Expression :-

\mathtt{\dfrac{x^3+12x}{6x^2+8}=\dfrac{y^3+27y}{9y^2+27}}

6x

2

+8

x

3

+12x

=

9y

2

+27

y

3

+27y

To Find :-

\mathtt{x:y\:\:by\:using\:Componendo\:and\:Dividendo.}x:ybyusingComponendoandDividendo.

Concept Used :-

\mathtt{If\:\dfrac{a}{b}=\dfrac{c}{d},then\:using\:Componendo\:and\:Dividendo}If

b

a

=

d

c

,thenusingComponendoandDividendo

\mathtt{\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}}

a−b

a+b

=

c−d

c+d

Solution :-

\mathtt{\dfrac{x^3+12x}{6x^2+8}=\dfrac{y^3+27y}{9y^2+27}}

6x

2

+8

x

3

+12x

=

9y

2

+27

y

3

+27y

Using Componendo and Dividendo,

\mathtt{\dfrac{x^3+12x+(6x^2+8)}{x^3+12x-(6x^2+8)}=\dfrac{y^3+27y+(9y^2+27)}{y^3+27y-(9y^2+27)}}

x

3

+12x−(6x

2

+8)

x

3

+12x+(6x

2

+8)

=

y

3

+27y−(9y

2

+27)

y

3

+27y+(9y

2

+27)

Opening brackets,

\mathtt{\dfrac{x^3+12x+6x^2+8}{x^3+12x-6x^2-8}=\dfrac{y^3+27y+9y^2+27}{y^3+27y-9y^2-27}}

x

3

+12x−6x

2

−8

x

3

+12x+6x

2

+8

=

y

3

+27y−9y

2

−27

y

3

+27y+9y

2

+27

Rewriting it,

\mathtt{\dfrac{x^3+3(2)^2(x)+3(2)(x^2)+2^3}{x^3+3(2^2)x-3(2)(x^2)-2^3}=\dfrac{y^3+3(3^2)(y)+3(3)(y^2)+3^3}{y^3+3(3^2)(y)-3(3)(y^2)-3^3}}

x

3

+3(2

2

)x−3(2)(x

2

)−2

3

x

3

+3(2)

2

(x)+3(2)(x

2

)+2

3

=

y

3

+3(3

2

)(y)−3(3)(y

2

)−3

3

y

3

+3(3

2

)(y)+3(3)(y

2

)+3

3

We know that,

\mathtt{(a+b)^3=a^3+3ab^2+3a^2b+b^3}(a+b)

3

=a

3

+3ab

2

+3a

2

b+b

3

\mathtt{(a-b)^3=a^3+3ab^2-3a^2b-b^3}(a−b)

3

=a

3

+3ab

2

−3a

2

b−b

3

Using Identities,

\mathtt{\dfrac{(x+2)^3}{(x-2)^3}=\dfrac{(y+3)^3}{(y-3)^3}}

(x−2)

3

(x+2)

3

=

(y−3)

3

(y+3)

3

\mathtt{\left(\dfrac{x+2}{x-2}\right)^3=\left(\dfrac{y+3}{y-3}\right)^3}(

x−2

x+2

)

3

=(

y−3

y+3

)

3

Taking Cube Root on both sides,

\mathtt{\sqrt[3]{\left(\dfrac{x+2}{x-2}\right)^3}=\sqrt[3]{\left(\dfrac{y+3}{y-3}\right)^3}}

3

(

x−2

x+2

)

3

=

3

(

y−3

y+3

)

3

\mathtt{\dfrac{x+2}{x-2}=\dfrac{y+3}{y-3}}

x−2

x+2

=

y−3

y+3

Using Componendo and Dividendo again,

\mathtt{\dfrac{x}{2}=\dfrac{y}{3}}

2

x

=

3

y

We can write it as,

\mathtt{\dfrac{x}{y}=\dfrac{2}{3}}

y

x

=

3

2

Answer :-

Hence, x : y is equivalent to 2 : 3.

\begin{gathered}\Huge{\textbf{\textsf{{\purple{Ans}}{\pink{wer}}{\color{pink}{:}}}}} \\ \end{gathered}

Attachments:
Similar questions