Math, asked by 12ths, 2 months ago

set 0 < θ < \frac{\pi }{2} and sin θ = \frac{1}{3}
find the value of cos θ - tan θ

Answers

Answered by user0888
53

Solution

Concept ①.

Given,

0&lt;\theta&lt;\dfrac{\pi }{2},

the angle exists in the first quadrant.

Then,

\sin \theta &gt;0, \cos \theta&gt;0, \tan\theta&gt;0.

Step ①: Finding the values of \cos \theta,\tan \theta.

By trigonometric identity,

\sin^{2} \theta +\cos^{2}\theta=1

\implies \left(\dfrac{1}{3} \right)^{2}+\cos^{2}\theta = 1

\implies \cos^{2}=\dfrac{8}{9}

\implies \cos\theta=\dfrac{2\sqrt{2} }{3}

And,

\tan\theta=\dfrac{\sin \theta }{\cos \theta }

\implies \tan\theta=\dfrac{1}{2\sqrt{2} }

\implies \tan \theta =\dfrac{\sqrt{2} }{4}

Step ②: Evaluation.

Hence,

\cos \theta -\tan \theta

=\left(\dfrac{2\sqrt{2} }{3} \right)-\left(\dfrac{\sqrt{2} }{4} \right)

=\dfrac{8\sqrt{2} }{12} -\dfrac{3\sqrt{2} }{12}

=\boxed{\dfrac{5\sqrt{2} }{12} }

This is the required answer.

Answered by Itzheartcracer
45

Given :-

0 < θ < π/2

sin θ = 1/3

To Find :-

Value of cosθ - tanθ

Solution :-

As we know that

sin²θ + cos²θ = 1

Given,

sinθ = 1/3

(1/3)² + cos²θ = 1

(1 × 1/3 × 3) + cos²θ = 1

1/9 + cos²θ = 1

cos²θ = 1 - 1/9

cos²θ = 9 - 1/9

cos²θ = 8/9

cosθ = √(8/9)

cosθ = √8/3

cosθ = 2√2/3

Now

tanθ = 1/2√2

tanθ = 1 × √2/4

tanθ = √2/4

Now

cosθ - tanθ

2√2/3 - √2/4

8√2 - 3 × √2/12

8√2 - 3√2/12

5√2/12

Similar questions