Math, asked by pavansharma9462, 1 month ago

Set builder from of A={1,1/4,1/9,1/16,1/25

Answers

Answered by mathdude500
6

 \green{\large\underline{\sf{Given- }}}

\rm :\longmapsto\:A = \bigg \{1, \: \dfrac{1}{4}, \:  \dfrac{1}{9}, \:  \dfrac{1}{16}, \:  \dfrac{1}{25} \bigg \}

 \red{\large\underline{\sf{To\:Find - }}}

The Set Builder form of set A.

 \blue{\large\underline{\sf{Solution-}}}

Given Set is

\rm :\longmapsto\:A = \bigg \{1, \: \dfrac{1}{4}, \:  \dfrac{1}{9}, \:  \dfrac{1}{16}, \:  \dfrac{1}{25} \bigg \}

To represent this roster form of set in Set Builder form, we have to first find a pattern.

So, above can be rewritten as

\rm :\longmapsto\:A = \bigg \{ \dfrac{1}{1} , \: \dfrac{1}{2 \times 2}, \:  \dfrac{1}{3 \times 3}, \:  \dfrac{1}{4 \times 4}, \:  \dfrac{1}{5 \times 5} \bigg \}

\rm :\longmapsto\:A = \bigg \{ \dfrac{1}{ {1}^{2} } , \: \dfrac{1}{ {2}^{2} }, \:  \dfrac{1}{ {3}^{2}} , \:  \dfrac{1}{ {4}^{2} }, \:  \dfrac{1}{ {5}^{2} } \bigg \}

So, required Set Builder Form is

\red{\rm :\longmapsto\:A =  \bigg\{x : x = \dfrac{1}{ {n}^{2} }, \: n \:  \in \: N \: and \: n \leqslant 5 \:  \bigg\}}

More to know :-

1. Commutative Law :-

\boxed{ \tt{ \: A\cup B = B\cup A \: }}

\boxed{ \tt{ \: A\cap B = B\cap A \: }}

2. Associative Law

\boxed{ \tt{ \: (A\cup B)\cup C = A\cup (B\cup C) \: }}

\boxed{ \tt{ \: (A\cap B)\cap C = A\cap (B\cap C) \: }}

3. Distributive Law

\boxed{ \tt{ \: A\cup (B\cap C \: ) = (A\cup B) \: \cap  \: (A\cup C) \: }}

\boxed{ \tt{ \: A\cap (B\cup C \: ) = (A\cap B) \: \cup  \: (A\cap C) \: }}

4. De Morgan's Law

\boxed{ \tt{ \: (A\cup B)' = A' \: \cap \: B' \: }}

\boxed{ \tt{ \: (A\cap B)' = A' \: \cup \: B' \: }}

Similar questions