Math, asked by harshsingh1711204, 2 months ago

Set of all real values of x satisfying the inequality 4(ln x)^3 -8(ln x)^2 - 11(en x) + 15<=0 is
(a, e^-b]U[e^c,e^d] and I = a^2+ b^2 + c^2 + d^2.
If [.] represents greatest integer function, then [l] is equal to
(A) 5
(B) 7
(C) 8
(D) 9​

Answers

Answered by shadowsabers03
44

We're given the inequality,

\longrightarrow 4(\ln x)^3-8(\ln x)^2-11\ln x+15\leq0

Let us solve this inequality first.

We can see the equality holds true for \ln x=1.

So we can divide our inequality by \ln x-1 like,

\longrightarrow 4(\ln x)^3-4(\ln x)^2-4(\ln x)^2+4\ln x-15\ln x+15\leq0

\longrightarrow 4(\ln x)^2\left(\ln x-1\right)-4\ln x\left(\ln x-1\right)-15\left(\ln x-1\right)\leq0

\longrightarrow\left(4(\ln x)^2-4\ln x-15\right)\left(\ln x-1\right)\leq0

\longrightarrow\left(4(\ln x)^2-10\ln x+6\ln x-15\right)\left(\ln x-1\right)\leq0

\longrightarrow\left(2\ln x\left(2\ln x-5\right)+3(2\ln x-5)\right)\left(\ln x-1\right)\leq0

\longrightarrow\left(2\ln x+3\right)\left(2\ln x-5\right)\left(\ln x-1\right)\leq0

Now the whole LHS is factorised here and we can apply wavy curve method, for \ln x.

\setlength{\unitlength}{1.5mm}\begin{picture}(5,5)\thicklines\put(0,0){\vector(1,0){60}}\multiput(15,0)(15,0){3}{\circle*{1}}\put(13,-4){$-\frac{3}{2}$}\put(29.5,-4){$1$}\put(43,-4){$\frac{5}{2}$}\put(60,-3){$\ln x$}\qbezier(45,0)(52.5,5)(60,10)\qbezier(30,0)(37.5,-5)(45,0)\qbezier(15,0)(22.5,5)(30,0)\qbezier(0,-10)(7.5,-5)(15,0)\end{picture}

So the condition for \ln x to satisfy our inequality is given by this wavy curve as,

\longrightarrow\ln x\in\left(-\infty,\ -\dfrac{3}{2}\right]\cup\left[1,\ \dfrac{5}{2}\right]

Taking antilog (possible since e^x is an increasing function),

\longrightarrow x\in\left(e^{-\infty},\ e^{-\frac{3}{2}}\right]\cup\left[e^1,\ e^{\frac{5}{2}}\right]

\longrightarrow x\in\left(0,\ e^{-\frac{3}{2}}\right]\cup\left[e,\ e^{\frac{5}{2}}\right]\quad\quad\dots(1)

But in the question, the solution is given as,

\longrightarrow x\in\left(a,\ e^{-b}\right]\cup\left[e^c,\ e^d\right]\quad\quad\dots(2)

Comparing (1) and (2) we get,

  • a=0
  • b=\dfrac{3}{2}
  • c=1
  • d=\dfrac{5}{2}

So,

\longrightarrow I=a^2+b^2+c^2+d^2

\longrightarrow I=0^2+\left(\dfrac{3}{2}\right)^2+1^2+\left(\dfrac{5}{2}\right)^2

\longrightarrow I=\dfrac{38}{4}

\longrightarrow I=9.5

\longrightarrow\underline{\underline{[I]=9}}

Hence (D) is the answer.

Similar questions