Set of maths question for bundle of points !
1. Find the number of values of x in the interval [0, 3π] satisfying the equation
2. If , prove that
3. Prove that
Anonymous:
true true reeshabh some idiots never understand
Answers
Answered by
7
1. 2sin²x+5sinx-3 = 0
2sin²x+6sinx-sinx-3 = 0
(sinx+3)(2sinx-1) = 0
sinx = -3 or sinx = 1/2
as -1≤sinx≤1 so sinx = -3 is not the solution
sinx = 1/2
for x∈[0,3π]
number of solution = 4
x = (π/6,5π/6,13π/6,17π/6)
2. a²sec²x-b²tan²x = c²
a²/cos²x - b²sin²x/cos²x = c²
a² - b²sin²x = c² - c²sin²x
sin²x = (c² - a²)/(c² - b²)
sinx = +-√{(c² - a²)/c² - b²)}
3. 1/cos290 + 1/√3sin250
(√3sin250 + cos290)/√3sin250cos290
{cos(270+20) + √3sin(270-20)}/{√3/2(sin(290+250) + sin(250-290))}
2{sin20/2 - √3cos20/2}/{-√3/2sin 40}
2{sin(20-60)}/(-√3/2 sin40)
2/{√3/2}
4/√3 prove
2sin²x+6sinx-sinx-3 = 0
(sinx+3)(2sinx-1) = 0
sinx = -3 or sinx = 1/2
as -1≤sinx≤1 so sinx = -3 is not the solution
sinx = 1/2
for x∈[0,3π]
number of solution = 4
x = (π/6,5π/6,13π/6,17π/6)
2. a²sec²x-b²tan²x = c²
a²/cos²x - b²sin²x/cos²x = c²
a² - b²sin²x = c² - c²sin²x
sin²x = (c² - a²)/(c² - b²)
sinx = +-√{(c² - a²)/c² - b²)}
3. 1/cos290 + 1/√3sin250
(√3sin250 + cos290)/√3sin250cos290
{cos(270+20) + √3sin(270-20)}/{√3/2(sin(290+250) + sin(250-290))}
2{sin20/2 - √3cos20/2}/{-√3/2sin 40}
2{sin(20-60)}/(-√3/2 sin40)
2/{√3/2}
4/√3 prove
Answered by
14
1.)
≈> 2sin²x+5sinx-3 = 0
≈>2sin²x+6sinx-sinx-3 = 0
≈>(sinx+3)(2sinx-1) = 0
≈>sinx = -3 or sinx = 1/2
≈>as -1≤sinx≤1 so sinx = -3 is not the solution
≈>sinx = 1/2
for x∈[0,3π]
number of solution = 4
x = (π/6,5π/6,13π/6,17π/6)
2. )
≈>a²sec²x-b²tan²x = c²
≈>a²/cos²x - b²sin²x/cos²x = c²
≈>a² - b²sin²x = c² - c²sin²x
≈>sin²x = (c² - a²)/(c² - b²)
≈>sinx = +-√{(c² - a²)/c² - b²)}
3. )
≈>1/cos290 + 1/√3sin250
≈> (√3sin250 + cos290)/√3sin250cos290
≈>{cos(270+20) + √3sin(270-20)}/≈>{√3/2(sin(290+250) + sin(250-290))}
≈>2{sin20/2 - √3cos20/2}/{-√3/2sin 40}
≈>2{sin(20-60)}/(-√3/2 sin40)
≈>2/{√3/2}
4/√3
°•° proved
____________________________________ _____
Similar questions