Math, asked by Reeshabh, 1 year ago

Set of maths question for bundle of points ! 

1. Find the number of values of x in the interval [0, 3π] satisfying the equation 2 sin^{2}x + 5sinx - 3 = 0
2. If  a^{2} sec^{2}A- b^{2} tan^{2}A =  c^{2}   , prove that sinA= \frac{+}{}  \sqrt{ \frac{ c^{2}- a^{2}  }{ c^{2}- b^{2}  } }
3. Prove that  \frac{1}{cos 290^{o} } +  \frac{1}{ \sqrt{3}sin 250^{o}  } = \frac{4}{ \sqrt{3} }


Anonymous: true true reeshabh some idiots never understand
Reeshabh: hehe

Answers

Answered by vikaskumar0507
7
1.  2sin²x+5sinx-3 = 0
2sin²x+6sinx-sinx-3 = 0
(sinx+3)(2sinx-1) = 0
sinx = -3 or sinx = 1/2
as -1≤sinx≤1 so sinx = -3 is not the solution 
sinx = 1/2
for x∈[0,3π]
number of solution = 4          
   x = (π/6,5π/6,13π/6,17π/6)

2.  a²sec²x-b²tan²x = c²
a²/cos²x - b²sin²x/cos²x = c²
a² - b²sin²x = c² - c²sin²x
sin²x = (c² - a²)/(c² - b²)
sinx = +-√{(c² - a²)/c² - b²)}
3. 1/cos290 + 1/√3sin250
  (√3sin250 + cos290)/√3sin250cos290
{cos(270+20) + √3sin(270-20)}/{√3/2(sin(290+250) + sin(250-290))}
2{sin20/2 - √3cos20/2}/{-√3/2sin 40}
2{sin(20-60)}/(-√3/2 sin40)
2/{√3/2}
4/√3  prove
Answered by TheDiamondBoyy
14

 \Huge\tt{{\color{purple}{{\underline{AN}}}}{\color{orchid}{{\underline{SW}}}}{\pink{{\underline{ER}}}}{\color{lightpink}{:-}}}

1.)

≈> 2sin²x+5sinx-3 = 0

≈>2sin²x+6sinx-sinx-3 = 0

≈>(sinx+3)(2sinx-1) = 0

≈>sinx = -3 or sinx = 1/2

≈>as -1≤sinx≤1 so sinx = -3 is not the solution 

≈>sinx = 1/2

for x∈[0,3π]

number of solution = 4          

   x = (π/6,5π/6,13π/6,17π/6)

2. )

 

≈>a²sec²x-b²tan²x = c²

≈>a²/cos²x - b²sin²x/cos²x = c²

≈>a² - b²sin²x = c² - c²sin²x

≈>sin²x = (c² - a²)/(c² - b²)

≈>sinx = +-√{(c² - a²)/c² - b²)}

3. )

≈>1/cos290 + 1/√3sin250

≈>  (√3sin250 + cos290)/√3sin250cos290

≈>{cos(270+20) + √3sin(270-20)}/≈>{√3/2(sin(290+250) + sin(250-290))}

≈>2{sin20/2 - √3cos20/2}/{-√3/2sin 40}

≈>2{sin(20-60)}/(-√3/2 sin40)

≈>2/{√3/2}

4/√3

°•° proved

____________________________________ _____

Similar questions