Math, asked by jayvm, 10 months ago

Set of real values of k if the equation x2 - (k-1)x + K2 = 0 has atleast one root in (1,2) is
(A) (2, 4)
(B) (-1, 1/3]
(C) (3)
(D) o​

Answers

Answered by MaheswariS
3

\textbf{Given:}

x^2-(k-1)x+k^2=0\;\text{has atleast one root in (1,2)}

\textbf{To find:}

\text{The real values of k}

\textbf{Solution:}

\text{Since the roots of $x^2-(k-1)x+k^2=0$ are real, we have}

b^2-4ac\;{\geq}\;0

(k-1)^2-4(1)k^2\;{\geq}\;0

k^2+1-2k-4k^2\;{\geq}\;0

1-2k-3k^2\;{\geq}\;0

3k^2+2k-1\;{\leq}\;0

(k+1)(3k-1)\;{\leq}\;0

\implies\,k\,\in\,[-1,\frac{1}{3}]

\textbf{Answer:}

\textbf{Option (B) is correct}

Similar questions