Seven times a two-digit number is equal to four times the number obtained by reversing the
order of its digits. If the difference between the digits is 3, find the number.
Answers
Answered by
0
Answer:
hey here is your answer
pls mark it as brainliest
so here we go
Step-by-step explanation:
let the two digit number be 10x+y
wherein digit at units place be y and that of tens be x
so number obtained by reversing digits is 10y+x
so according to first condition
7(10x+y)=4(10y+x)
so 70x+7y=40y+4x
so 66x=33y
ie 2x=y (1)
so now we can conclude that y is greater than x from (1)
according to second condition
y-x=3 (2)
substitute value of y in (2) from (1)
ie 2x-x=3
ie x=3
substitute value of x in (1)
we get
y=6
so our two digit number was 10x+y
10x+y=(10×(3))+(6)
ie 30+6
=36
so our required two digit number is 36 and the reversed number is 63
u can bet on my answer
Similar questions