Math, asked by pkkhawle667, 1 year ago


शंकु की त्रिज्या और ऊँचाई 4:3 के अनुपात में है। यदि शंकु के आधार का क्षेत्रफल 154 वां सभी है तो छ
कुल पृष्ठीय क्षेत्रफल ज्ञात कीजिए।​

Answers

Answered by abc12326
1

Answer:

22

Step-by-step explanation:

Let suppose the answer is X

4:3 = 154

4x + 3x = 154

7x = 154

x = 154÷7

x = 22

Answered by slicergiza
0

Total surface area would be 346.5 unit²

Step-by-step explanation:

We know that,

The base area of a cone,

B=\pi r^2

Where, r is the radius of the cone,

We have,

B = 154 unit²,

\pi r^2 = 154

\frac{22}{7} r^2 = 154

r^2 =\frac{154\times 7}{22}

r^2 = 7\times 7

r^2 = 7^2

\implies r = 7

Now, radius and height are in the ratio of 4 : 3,

If h represents height,

\frac{7}{h}=\frac{4}{3}

\implies h =\frac{21}{4}

Also, the total surface area of a cone,

A = base area + curved surface area

A=154 + \pi r \sqrt{r^2 + h^2}

=154 +\frac{22}{7}\times 7 \sqrt{7^2 +(\frac{21}{4})^2}

=154 + 22\sqrt{49 +\frac{441}{16}}

=154 + 22\sqrt{\frac{784+441}{16}}

=154 + 22\sqrt{\frac{1225}{16}}

=154 + 22\times \frac{35}{4}

=154 + 192.5

= 346.5 unit²

#Learn more:

Find the curved surface area and total surface area of the each of the following right circular cones

https://brainly.in/question/1791407

Similar questions