श्न १. ओळखा पाहू : (१) शिवरायांचा जन्म झालेले ठिकाण (२) आदिलशाहाने शहाजीराजांना कर्नाटकात जहागीर दिलेले ठिकाण (३) खेळणा किल्ल्याला शिवरायांनी दिलेले नाव (४) स्वराज्याच्या पहिल्या राजधानीचे नाव (५) जावळीच्या खोऱ्यात शिवरायांनी बांधलेला किल्ला (६) आदिलशाहाने सिद्दी जौहरला दिलेला किताब (७) आदिलशाहीशी झालेल्या तहानुसार शिवरायांनी परत दिलेला किल्ला ५. स्वराज्यस्थापना
Answers
Answer:
Given:−
For A Right Circular Cylinder :
Base Radius , r = 14 cm
Height , h = 35 cm
-----------------------
\large \bf \clubs \: To \: Find :-♣ To Find:−
\begin{gathered}{\begin{cases} \: \: \text{CSA \: of \: Cylinder } \\ \text{ TSA \: of \: Cylinder } \\ \text{ Volume \: of \: Cylinder} \end{cases}}\end{gathered}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
CSA of Cylinder
TSA of Cylinder
Volume of Cylinder
-----------------------
\large \bf \clubs \: Main \: Formulas :-♣ Main Formulas :−
\begin{gathered}{\begin{cases} \: \: \text{CSA \: of \: Cylinder } = 2\pi \text{rh}\\ \text{ TSA \: of \: Cylinder } = 2\pi \text{r(r + h)} \\ \text{ Volume \: of \: Cylinder} = \pi {r}^{2} \text{h} \end{cases}}\end{gathered}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
CSA of Cylinder =2πrh
TSA of Cylinder =2πr(r + h)
Volume of Cylinder=π r
2
h
Where ,
r = Base Radius of Cylinder
h = height of Cylinder
\pi = \dfrac{22}{7}π=
7
22
-----------------------
\large \bf \clubs \: Solution :-♣ Solution :−
We Have ,
r = 14 cm
h = 35 cm
✏ Calculating CSA of Cylinder :
Using Formula of CSA
\begin{gathered} \text{CSA =2πrh } \\ \\ = 2 \times \frac{22}{7} \times 14 \times 35 \\ \\ =44\times70\\\\ \purple{ \Large :\longmapsto \underline {\boxed{{\bf CSA = 3080 cm^2} }}}\end{gathered}
CSA =2πrh
=2×
7
22
×14×35
=44×70
:⟼
CSA=3080cm
2
✏ Calculating TSA of Cylinder :
Using Formula of TSA
\begin{gathered}\text{TSA =2πr(r + h) } \\ \\ = 2 \times \frac{22}{7} \times 14 (14 + 35)\\ \\ =2 \times \frac{22}{7} \times 14 \times 49\\\\ \purple{ \Large :\longmapsto \underline {\boxed{{\bf TSA = 4312 cm^2} }}}\end{gathered}
TSA =2πr(r + h)
=2×
7
22
×14(14+35)
=2×
7
22
×14×49
:⟼
TSA=4312cm
2
✏ Calculating Volume of Cylinder :
Using Formula of Volume
\begin{gathered}\text{Volume =πr²h } \\ \\ = \frac{22}{7} \times (14 {)}^{2} \times 35 \\ \\ =\frac{22}{7} \times 196\times 35 \\\\ \purple{ \large :\longmapsto \underline {\boxed{{\bf Volume = 21560 cm^3} }}}\end{gathered}
Volume =πr²h
=
7
22
×(14)
2
×35
=
7
22
×196×35
:⟼
Volume=21560cm
3
Hence ,
\begin{gathered}\pink{{\begin{cases} \: \: \bf{CSA \: of \: Cylinder }=3080cm^2 \\ \bf{ TSA \: of \: Cylinder }=4312 cm^2 \\ \bf{ Volume \: of \: Cylinder}=21560cm^3 \end{cases}}}\end{gathered}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
CSAofCylinder=3080cm
2
TSAofCylinder=4312cm
2
VolumeofCylinder=21560cm
3
-----------------------