History, asked by rinirastogi19septemb, 20 days ago

Shahjahanabad and Nineteenth century Delhi .

Answers

Answered by gudduchoudhary1983
0

Answer:

Solution−

Consider,

\begin{gathered}\displaystyle\rm{ \frac{1}{ {1} } + \frac{1}{ {1}^{} + {2}^{} } + \frac{1}{ {1}^{} + {2}^{} + {3}^{} } + \dots} \\ \end{gathered}

1

1

+

1

+2

1

+

1

+2

+3

1

+…

The general term is given by

\begin{gathered}\rm \: T_{n} = \dfrac{1}{1 + 2 + 3 + - - - + n} \\ \end{gathered}

T

n

=

1+2+3+−−−+n

1

\begin{gathered}\rm \: T_{n} = \dfrac{1}{\dfrac{n(n + 1)}{2} } \\ \end{gathered}

T

n

=

2

n(n+1)

1

\begin{gathered}\rm \: T_{n} = \dfrac{2}{n(n + 1)} \\ \end{gathered}

T

n

=

n(n+1)

2

\begin{gathered}\rm \: T_{n} = 2\bigg(\dfrac{n + 1 - n}{n(n + 1)}\bigg) \\ \end{gathered}

T

n

=2(

n(n+1)

n+1−n

)

\begin{gathered}\rm \: T_{n} = 2\bigg({\dfrac{1}{n} - \dfrac{1}{n + 1} }\bigg) \\ \end{gathered}

T

n

=2(

n

1

n+1

1

)

So,

\begin{gathered}\rm \: T_{1} = 2\bigg({1 - \dfrac{1}{2} }\bigg) \\ \end{gathered}

T

1

=2(1−

2

1

)

\begin{gathered}\rm \: T_{2} = 2\bigg({ \frac{1}{2} - \dfrac{1}{3} }\bigg) \\ \end{gathered}

T

2

=2(

2

1

3

1

)

\begin{gathered}\rm \: T_{3} = 2\bigg({ \frac{1}{3} - \dfrac{1}{4} }\bigg) \\ \end{gathered}

T

3

=2(

3

1

4

1

)

.

.

.

.

\begin{gathered}\rm \: T_{n} = 2\bigg({ \frac{1}{n} - \dfrac{1}{n + 1} }\bigg) \\ \end{gathered}

T

n

=2(

n

1

n+1

1

)

.

.

.

.

So,

\begin{gathered}\rm \: S_n = T_{1} + T_{2} + T_{3} + - - - + T_{n} \\ \end{gathered}

S

n

=T

1

+T

2

+T

3

+−−−+T

n

\begin{gathered}\rm \: = \:2\bigg({ 1 - \dfrac{1}{2} }\bigg) + 2\bigg({ \dfrac{1}{2} - \dfrac{1}{3} }\bigg) + 2\bigg({ \dfrac{1}{3} - \dfrac{1}{4} }\bigg) + - - + 2\bigg({ \dfrac{1}{n} - \dfrac{1}{n + 1} }\bigg) \\ \end{gathered}

=2(1−

2

1

)+2(

2

1

3

1

)+2(

3

1

4

1

)+−−+2(

n

1

n+1

1

)

\rm \: = \:2\bigg(1 - \dfrac{1}{2} +\dfrac{1}{2} - \dfrac{1}{3} + - - + \dfrac{1}{n} - \dfrac{1}{n + 1} \bigg)=2(1−

2

1

+

2

1

3

1

+−−+

n

1

n+1

1

)

\rm \: = \:2\bigg(1 - \dfrac{1}{n + 1} \bigg)=2(1−

n+1

1

)

\begin{gathered}\rm\implies \:\rm \:S_n = \:2\bigg(1 - \dfrac{1}{n + 1} \bigg) \\ \end{gathered}

⟹S

n

=2(1−

n+1

1

)

So, Required sum is

\begin{gathered}\rm \: \displaystyle\lim_{n \to \infty }\rm S_n \\ \end{gathered}

n→∞

lim

S

n

\begin{gathered}\rm \: =\displaystyle\lim_{n \to \infty }\rm \:2\bigg(1 - \dfrac{1}{n + 1} \bigg) \\ \end{gathered}

=

n→∞

lim

2(1−

n+1

1

)

\begin{gathered}\rm \: = \:2 \times (1 - 0) \\ \end{gathered}

=2×(1−0)

\begin{gathered}\rm \: = \:2 \\ \end{gathered}

=2

Hence,

\begin{gathered} \\ \rm\implies \:\boxed{\sf{ \:\displaystyle\rm { \frac{1}{ {1} } + \frac{1}{ {1}^{} + {2}^{} } + \frac{1}{ {1}^{} + {2}^{} + {3}^{} } + \dots = 2} \: }} \\ \\ \end{gathered}

1

1

+

1

+2

1

+

1

+2

+3

1

+⋯=2

Answered by sakshirathod9743
1

Answer:

Old Delhi or Purani Dilli is an area in the city of Delhi, India. It was founded as a walled city named Shahjahanabad in 1639, when Shah Jahan (the Mughal emperor at the time) decided to shift the Mughal capital from Agra.

Similar questions