Math, asked by Anonymous, 1 month ago

Shanti Sweets Stall was placing an order for making cardboard boxes for packing their sweets Two sizes of boxes were required. The bigger of dimensions 25 cm x 20 cm x 5 cm and the smaller of dimensions 15 cmx 12 cm x 5 cm. For all the overlaps. 5% of the total surface area is required extra. If the cost of the cardboard is
74 for 1000 cm, find the cost of cardboard required for supplying 250 boxes of each
kind.

{\red{\bf{Subject{\leadsto}}}}{\blue{\bf{  Maths}}}
{\red{\bf{Topic{\leadsto}}}}{\blue{\bf{  Surface \:  Area \:  and \:  Volumes}}}


Note :-
Don't Spam
Quality answers

Answers

Answered by ShiningBlossom
12

 \large \underline{ \sf \: In \: first \:  box :-}

  • l = 25 cm
  • b = 20 cm
  • h = 5 cm

 \red{ \sf \: Area  \: of \:  cuboid = 2(lb + bh + lh)}

 \sf  \longrightarrow 2(25 \times 20 + 20 \times 5 + 5 \times 25)

\sf  \longrightarrow 2(500 + 100 + 125)

\sf  \longrightarrow 2 \times 725

\sf  \longrightarrow 1450 \:  {cm}^{2}

 \large{ \underline{ \sf \: In  \: second  \: box:-}}

  • l = 15 cm
  • b = 12 cm
  • h = 5 cm

\red{ \sf \: Area  \: of \:  cuboid = 2(lb + bh + lh)}

\sf  \longrightarrow 2(15 \times 12 + 12 \times 5 + 15 \times 5)

\sf  \longrightarrow 2(180 + 60 + 75)

\sf  \longrightarrow 2 \times 315

\sf  \longrightarrow 630 \:  {cm}^{2}

Area of both cuboid

\sf  \longrightarrow 1450 + 630

\sf  \longrightarrow 2080 \:  {cm}^{2}

Total area of cuboid

\sf  \longrightarrow 2080 + 5\% \: of \: 2080

\sf  \longrightarrow 2080 +  \frac{5}{100}  \times 2080 \\

\sf  \longrightarrow 2080 + 104

\sf  \longrightarrow 2184 \:  {cm}^{2}

Total area of 250 boxes

\sf  \longrightarrow 250 \times 2184

Cost of 1000 cm² is ₹ 4.

Cost of 1 cm² is ₹ 4/1000

So, Cost of 250×2184 is $\sf =\frac{4}{1000}×250×2184$

$\sf = ₹ 2184$

Answered by as3801504
4

Dimension of bigger box =25 cm×20 cm×5 cm

  • Total surface area of bigger box =2(lb+bh+lh)
  • =2(25×20+20×5+25×5)
  • =1450cm *2

  • Dimension of smaller box =15 cm×12 cm×5 cm
  • Total surface area of smaller box =2(lb+bh+lh)
  • =2(15×12+12×5+15×5)
  • =630cm*2

Total surface area of 250 boxes of each type =250(1450+630) =250×2080cm*2

=520000 cm*2

Extra area required =

100cm *2

(1450+630)×250 cm*2

=26000 cm*2

Total Cardboard required =(520000+26000) cm*2 =546000 cm*2

Total cost of cardboard sheet=(546000×

1000/4

=Rs.2184

  • hope it helpful for you please mark me brainlist

Similar questions