शरण और मयूख एक साथ मिलकर किसी कार्य को 18 दिनों में
समाप्त करते हैं। वहां पर मयूख इसी कार्य को अकेले करता है और
एक-तिहाई कार्य पूरा करके काम छोड़ देता। इसके बाद शरण कार्य
को अकेले पूरा करता है। इस प्रकार दोनों मिलकर कार्य को 40 दिन
में पूरा कर पाते हैं। यदि मयूख शरण से ज्यादा तेजी से कार्य कर
लेता तो शरण अकेले कितने दिनों में पूरे कार्य को समाप्त करता?
Answers
Answer:
yaar main To Main answer Nahin Pata bataunga
■■प्रश्न का उत्तर है, शरण को अकेले,काम को पूरा करने के लिए 45 दिन लगेंगे।■■
◆हम ऐसा मानेंगे, कि काम को पूरा करने के लिए मयूर को 'x' दिन लगते है।
तो,एक दिन में मयुर 1/x काम करेगा।
◆इसी तरह हम मानेंगे कि काम को पूरा करने के लिए शरण को 'y' दिन लगते है।
तो,एक दिन में शरण 1/y काम करेगा।
◆प्रश्न में दी गई जानकारी के अनुसार,यदि मयुर और शरण साथ में काम करते थे,तो काम को पूरा करने के लिए उन्हें 18 दिन लगते थे।
मतलब, 1/x +1/y =1/18.... (१)
◆मयुर ने एक तिहाई कार्य पूरा करने के बाद काम छोड़ दिया,मतलब
काम करने के लिए उसे 1/3(x) दिन लगे।
◆बचा हुआ काम शरण ने पूरा किया,
बचा हुआ काम है: 1-1/3 = 2/3
तो काम करने के लिए उसे 2/3(y) दिन लगे।
◆ शरण और मयुर दोनों, काम को 40 दिनों में पूरा करते है,
1/3(x) +2/3(y) = 40
x+2y/3 = 40
x+2y= 120 ....(2)
◆समीकरण (1) से हम 'x' की वैल्यू निकालेंगे,
1/x +1/y =1/18
x+y/xy = 1/18
18(x+y) =xy
18y =xy-18x
18y = x(y - 18)
x = 18y/(y - 18)
अब हम 'x' की इस वैल्यू को समीकरण (2) में डालेंगे,
x+2y= 120
18y/(y - 18) +2y =120
18y + 2y(y - 18) = 120(y - 18)
18y + 2y2 -36y =120y -2160
2y2 +18y-36y-120y + 2160 =0
2y2-138y +2160 =0
इस समीकरण को 2 से भाग करने पर हमें मिलेगा,
y2- 69y+ 1080 =0
(y-24)(y-45) =0
y=24 या y=45
y=24 समीकरण (2) में डालने पर,
x+2y=120
=x +2(24) =120
x= 120- 48
x= 72
जब y=45
तो, x +2(45) =120
x = 120 -90
x = 30
जब,मयुर को 30 दिन लगेंगे तो शरण को 45 दिन लगेंगे।
जब मयुर को 72 दिन लगेंगे तो शरण को 24 दिन लगेंगे।
◆प्रश्न में दिए गए जानकारी से हमें पता चलता है कि मयुर शरण से जल्दी काम करता है,
◆इसलिए, शरण को 45 दिन लगेंगे।