Math, asked by mrsaksham215249, 4 months ago

share trigonometry table describe it​

Answers

Answered by ItzVenomKingXx
4

Trigonometry is the branch of mathematics which deals with the relationship between the sides of a triangle (Right-angled triangle) and its angles.

All the trigonometric functions are related to the sides of the triangle and their values can be easily found by using the following relations:

Sin = Opposite/Hypotenuse

Cos = Adjacent/Hypotenuse

Tan = Opposite/Adjacent

Cot = 1/Tan = Adjacent/Opposite

Cosec = 1/Sin = Hypotenuse/Opposite

Sec = 1/Cos = Hypotenuse/Adjacent

By using a right-angled triangle as a reference, the trigonometric functions or identities are derived: sin θ = Opposite Side/Hypotenuse. cos θ = Adjacent Side/Hypotenuse. tan θ = Opposite Side/Adjacent Side.

\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} }, & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}

Answered by niishaa
2

Answer:

Trigonometry is the branch of mathematics which deals with the relationship between the sides of a triangle (Right-angled triangle) and its angles.

All the trigonometric functions are related to the sides of the triangle and their values can be easily found by using the following relations:

Sin = Opposite/Hypotenuse

Cos = Adjacent/Hypotenuse

Tan = Opposite/Adjacent

Cot = 1/Tan = Adjacent/Opposite

Cosec = 1/Sin = Hypotenuse/Opposite

Sec = 1/Cos = Hypotenuse/Adjacent

By using a right-angled triangle as a reference, the trigonometric functions or identities are derived: sin θ = Opposite Side/Hypotenuse. cos θ = Adjacent Side/Hypotenuse. tan θ = Opposite Side/Adjacent Side.

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} }, & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions