Math, asked by swarishreddy01, 1 month ago

SHL.
Choose the correct option.
If log(2.3) = 0.3617, then log(23) + log(0.23) + log(0.023) = .​

Answers

Answered by mathdude500
2

\large\underline{\sf{Given- }}

\rm :\longmapsto\: log(2.3) = 0.3617

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\: log(23) +  log(0.23) +  log(0.023)

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

\rm :\longmapsto\: log(xy) =  log(x) +  log(y)

\rm :\longmapsto\: log( {x}^{y} ) = y log(x)

\rm :\longmapsto\: log(10) = 1

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: log(2.3) = 0.3617

Consider,

\rm :\longmapsto\: log(23)

 \rm \:  =  \:  \:  log(2.3 \times 10)

 \rm \:  =  \:  \:  log(2.3)  +  log(10)

 \rm \:  =  \:  \:0.3617 + 1

 \rm \:  =  \:  \:1.3617

\bf\implies \: log(23)   =  \:  \:1.3617

Now, Consider

\rm :\longmapsto\: log(0.23)

\rm \:  =  \:  \: log(2.3 \times  {10}^{ - 1} )

\rm \:  =  \:  \: log(2.3) +  log( {10}^{ - 1} )

\rm \:  =  \:  \: log(2.3)  -  log( {10})

\rm \:  =  \:  \:0.3617 - 1

\rm \:  =  \:  \: - 0.6383

\bf\implies \: log(0.23)  =  \:  \: - 0.6383

Now, Consider

\rm :\longmapsto\: log(0.023)

\rm \:  =  \:  \: log(2.3 \times  {10}^{ - 2} )

\rm \:  =  \:  \: log(2.3) +  log( {10}^{ - 2} )

\rm \:  =  \:  \: log(2.3)  - 2 log( {10})

\rm \:  =  \:  \:0.3617 - 2

\rm \:  =  \:  \: - 1.6383

\bf\implies \: log(0.023)  =  \:  \: - 1.6383

Now, Consider

\rm :\longmapsto\: log(23) +  log(0.23) +  log(0.023)

\rm \:  =  \:  \:1.3617 - 0.6383 - 1.6383

\rm \:  =  \:  -  \:0.9149

Hence,

\bf\implies \:\: log(23) +  log(0.23) +  log(0.023) =  - 0.9149

Additional Information :-

\rm :\longmapsto\: log_{x}(x) = 1

\rm :\longmapsto\: log_{x}( {x}^{y} ) = y

\rm :\longmapsto\: log_{ {x}^{z} }( {x}^{y} ) =  \dfrac{y}{z}

\rm :\longmapsto\: {e}^{logx} = x

\rm :\longmapsto\: {e}^{ylogx} =  {x}^{y}

\rm :\longmapsto\: {a}^{ log_{a}(x) } = x

\rm :\longmapsto\: {a}^{ ylog_{a}(x) } =  {x}^{y}

\rm :\longmapsto\: log(1) = 0

\rm :\longmapsto\: log_{x}(y) =  \dfrac{logy}{logx}

Answered by llsmilingsceretll
3

Given that:

  • log(2.3) = 0.3617

To Find:

  • log(23) + log(0.23) + log(0.023) = ?

We know that:

  • log(10) = 1

Finding the value of,

\dashrightarrowlog(23) = log{(23/10) × 10}

\dashrightarrowlog(23) = log(2.3) + log(10)

\dashrightarrowlog(23) = 0.3617 + 1

\dashrightarrowlog(23) = 1.3617

\dashrightarrowlog(0.23) = log(2.3/10)

\dashrightarrowlog(0.23) = log(2.3) - log(10)

\dashrightarrowlog(0.23) = 0.3617 - 1

\dashrightarrowlog(0.23) = - 0.6383

\dashrightarrowlog(0.023) = log(2.3/100)

\dashrightarrowlog(0.023) = log(2.3) - log(100)

\dashrightarrowlog(0.023) = log(2.3) - log(10²)

\dashrightarrowlog(0.023) = log(2.3) - 2log(10)

\dashrightarrowog(0.023) = 0.3617 - 2(1)

\dashrightarrowlog(0.023) = 0.3617 - 2

\dashrightarrowlog(0.023) = - 1.6383

Now we have:

\dashrightarrowlog(23) = 1.3617

\dashrightarrowlog(0.23) = - 0.6383

\dashrightarrowlog(0.023) = - 1.6383

Finding,

\dashrightarrowlog(23) + log(0.23) + log(0.023)

\dashrightarrow1.3617 + (- 0.6383) + (- 1.6383)

\dashrightarrow1.3617 - 0.6383 - 1.6383

\dashrightarrow - 0.9149

Hence,

  • log(23) + log(0.23) + log(0.023) = - 0.9149
Similar questions