shortcut for remembering trignometric values
Answers
Answered by
0
Shortcut for remembering trignometric values
sine x=cosine(90°-x); cosine x=sin (90°-x).
tangent x=cotangent (90°-x);
cotangent x=tan (90°-x).
secant x=cosecant (90°-x);
cosecant x=sec (90°-x)
[where there is ‘co', there is 90°-]
1/sin=cosec; 1/cosec=sin
1/cos=sec; 1/sec=cos
1/tan=cot; 1/cot=tan.
Also, keep remembered that the sine ratio of positive angles lie in between 0 and 1; and it increases as the angle increases from 0° to 90°.
If you know all these, why should you keep remembered ALL the values of the entire table? Just remember the following:
sin 0°=0, sin 30°=1/2, sin 45°=1/√2, sin 60°=√3/2 and sin 90°=1.
If you remember these, then you know
sin 0°=cos 90°=0.
sin 30°=cos 60°=1/2
sin 45°=cos 45°=1/√2
sin 60°=cos 30°=√3/2
sin 90°=cos0°=1
And
tan0°=sin0°/cos0°=0
tan 30°=sin 30°/cos 30°=1/√3
etc.
And also,
cot 0°=1/tan 0°=infinity
sec 30°= 1 cos 30°=2/√3
cosec 45°=1/sin 45°=√2
sine x=cosine(90°-x); cosine x=sin (90°-x).
tangent x=cotangent (90°-x);
cotangent x=tan (90°-x).
secant x=cosecant (90°-x);
cosecant x=sec (90°-x)
[where there is ‘co', there is 90°-]
1/sin=cosec; 1/cosec=sin
1/cos=sec; 1/sec=cos
1/tan=cot; 1/cot=tan.
Also, keep remembered that the sine ratio of positive angles lie in between 0 and 1; and it increases as the angle increases from 0° to 90°.
If you know all these, why should you keep remembered ALL the values of the entire table? Just remember the following:
sin 0°=0, sin 30°=1/2, sin 45°=1/√2, sin 60°=√3/2 and sin 90°=1.
If you remember these, then you know
sin 0°=cos 90°=0.
sin 30°=cos 60°=1/2
sin 45°=cos 45°=1/√2
sin 60°=cos 30°=√3/2
sin 90°=cos0°=1
And
tan0°=sin0°/cos0°=0
tan 30°=sin 30°/cos 30°=1/√3
etc.
And also,
cot 0°=1/tan 0°=infinity
sec 30°= 1 cos 30°=2/√3
cosec 45°=1/sin 45°=√2
Similar questions