Physics, asked by vanshikasingh42, 6 months ago

shou
centr
3. The density of a linear rod of length L varies as
p= A + Bx where x is the distance from the left end.
Locate the centre of mass.
Solution
mi
f
C is
dista
O
dx
Figure 9-W3
at C​

Attachments:

Answers

Answered by AayushNigade
0

Answer:

ANSWER

Consider an element dx at a distance x from one end of the rod of length L.

The center of mass of the rod is X

cm

=

0

L

λdx

0

L

xλdx

or X

cm

=

0

L

(A+Bx)dx

0

L

x(A+Bx)dx

=

[Ax+Bx

2

/2]

0

L

[Ax

2

/2+Bx

3

/3]

0

L

=

AL+BL

2

/2

AL

2

/2+BL

3

/3

=

6

3AL

2

+2BL

3

×

2AL+BL

2

2

=

3L(2A+BL)

L

2

(3A+2BL)

=

3(2A+BL)

L(3A+2BL)

Answered By

toppr

How satisfied are you with the answer?

This will help us to improve better

answr

Get Instant Solutions, 24x7

No Signup required

girl

More Questions by difficulty

EASY

MEDIUM

HARD

Answered by TheUnsungWarrior
1

Bravo! Its an IIT Question!

Answer:

Centre of Mass, Xcm ⇒ \frac{(3A + 2BL)L}{3(2A + BL)}

Explanation:

Given;-

  Density, λ = A + Bx

   Length, = L

Let the very small distance after x be dx, mass be dm. We also know that, dm = λ × dx.

Now, we know by formula that;-

Xcm = \frac{\int\limits^L_0 {} \, x\, dm }{\int\limits^L_0 {x} \, dm }

        = \frac{\int\limits^L_0 {x}(A+ Bx)\, dx }{\int\limits^L_0 {(A + Bx)} \, dx }

        = \frac{\int\limits^L_0 {(Ax + Bx^{2} )} \, dx }{(A + Bx)\,dx}

        = \frac{\int\limits^L_0 {(Adx^{2} + Bdx^{3} }) }{\int\limits^L_0 {(Adx + Bdx^{2}) } }

        = \frac{A\int\limits^L_0 {x} \, dx^{2} \,+ \,B\int\limits^L_0 {dx^{3} }   }{A\int\limits^L_0 {dx} \,+ \, B\int\limits^L_0 {dx^{2} }  }

        =\frac{A[\frac{x^{2} }{2}]^{L\, to \, 0} \, + \, B[\frac{x^{3} }{3}]^{L \, to \, 0} }{A[x]^{L \, to \, 0}\, + \, B[\frac{x^{2} }{2}]^{L \, to \, 0}     }

        = \frac{\frac{AL^{2} }{2} \, + \, \frac{BL^{3} }{3} }{AL + \frac{BL^{2} }{2} }

        = \frac{\frac{(3AL^{2})\,  + \, (2BL^{3} ) }{6} }{\frac{(2AL)\, + \, (BL^{2}) }{2} }

        = [\frac{3AL^{2} \, + \, 2BL^{3} }{6} ] [\frac{2}{2AL \, + \, BL^{2} } ]

        = \frac{3AL^{2}\, +\, 2BL^{3}  }{3(2AL\, + \, BL^{2} )}

        = \frac{L ( 3AL \,+\, 2BL^{2}) }{L( 3(2a\, + \, BL) ) }

        = \frac{(3AL \,+\, 2BL^{2}) }{3 (2A\, + \, BL)}

        = \frac{(3A\, +\, 2BL)L}{3(2A + BL)}

Hope it helps! ;-))

Similar questions