Math, asked by urviarora, 1 year ago

show 1/√4+√5+1/√5+√6+1/√6+√7+√8+1/√8+√9=1​

Answers

Answered by Anonymous
12

Answer :-

We have to show that

 \frac{1}{\sqrt{4} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{6}} + \frac{1}{\sqrt{6} + \sqrt{7}} + \frac{1}{\sqrt{7} + \sqrt{8}} + \frac{1}{\sqrt{8} + \sqrt{9}} = 1

Now as we know we that

→ a + b = b + a

We can say that

 \frac{1}{\sqrt{5} + \sqrt{4}} + \frac{1}{\sqrt{6} + \sqrt{5}} + \frac{1}{\sqrt{7} + \sqrt{6}} + \frac{1}{\sqrt{8} + \sqrt{7}} + \frac{1}{\sqrt{9} + \sqrt{8}} = 1

 \implies \sum\limits_{k = 4}^{k= 8} \frac{1}{\sqrt{k+1} + \sqrt{k}}

On rationalizing

 \implies \sum\limits_{k = 4}^{k= 8} \frac{1}{\sqrt{k+1} + \sqrt{k}} \times \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k+1} - \sqrt{k}}

 \implies \sum\limits_{k = 4}^{k= 8}  \frac{\sqrt{k+1} - \sqrt{k}}{(\sqrt{k+1})^2 - (\sqrt{k})^2}

 \implies \sum\limits_{k = 4}^{k= 8}  \frac{\sqrt{k+1} - \sqrt{k}}{k+1 - k}

 \implies \sum\limits_{k = 4}^{k= 8}  \frac{\sqrt{k+1} - \sqrt{k}}{1 }

Now the number

= \tiny {( \sqrt{5} - \sqrt{4} ) + ( \sqrt{6} - \sqrt{5} )+ ( \sqrt{7} - \sqrt{6} )+ ( \sqrt{8} - \sqrt{7} )+ ( \sqrt{9} - \sqrt{8} )}

 = -\sqrt{4} + \sqrt{9}

 = \sqrt{9} - \sqrt{4}

 = 3 - 2

 = 1

= LHS

▪️And as

LHS = RHS = 1

Hence Shown


Anonymous: Done now !
Anonymous: Wonderful
Anonymous: Thanks .... ^_^
MadamCurie: Outstanding.. amaze balls !!
Anonymous: Thanks ^_^
Similar questions