Math, asked by divyaupadhyay109, 2 months ago

Show Answer
Question #4
If the absolute difference between the selling price of the article when there is 15% loss and 15% gain in
selling a article is Rs 450, then what is the cost price of the article?
Y Rs 1,200
Rs 1,500
Rs 2.000
Rs 2 200​

Answers

Answered by Yuseong
17

Answer:

The cost price of the article is 1,500.

Step-by-step explanation:

Here, as per the provided information in the given question, we have :

• Difference between the selling price of the article when there is 15% loss and 15% gain in selling a article is Rs 450.

We are asked to calculate the cost price of the article.

Let us assume the cost price of article as Rs. x.

⇒ Cost price = Rs. x

★ Calculating SP when there is 15% loss :-

 \longrightarrow \underline{ \boxed {\sf { S.P = \Bigg (  \dfrac{100-Loss \%}{100}  \Bigg ) \times C.P}} }\\

  • C.P (Cost price) = x
  • Loss % = 15 %

Substituting the given values.

 \longrightarrow \sf {S.P = \Bigg (  \dfrac{100-15}{100}  \Bigg ) \times x }\\

 \longrightarrow \sf {S.P = \Bigg (  \dfrac{85}{100}  \Bigg ) \times x }\\

 \longrightarrow \sf {S.P =  \dfrac{85}{100} x }\\

Let it be the equation (1).

Calculating SP when there is 15% gain :-

 \longrightarrow \underline{ \boxed {\sf { S.P = \Bigg (  \dfrac{100+ Gain \%}{100}  \Bigg ) \times C.P}} }\\

  • C.P (Cost price) = x
  • Gain % = 15 %

Substituting the given values.

 \longrightarrow \sf {S.P = \Bigg (  \dfrac{100+15}{100}  \Bigg ) \times x }\\

 \longrightarrow \sf {S.P = \Bigg (  \dfrac{115}{100}  \Bigg ) \times x }\\

 \longrightarrow \sf {S.P =  \dfrac{115}{100} x }\\

Let it be the equation (2).

According to the question,

 \longrightarrow Selling price when there is 15% gain ― Selling price when there is 15% loss = Rs. 450

 \longrightarrow \sf { \dfrac{115}{100}x - \dfrac{85}{100}x = Rs. \: 450 }\\

 \longrightarrow \sf { \dfrac{115x - 85 x}{100} = Rs. \: 450 }\\

 \longrightarrow \sf { \dfrac{30x}{100} = Rs. \: 450 }\\

 \longrightarrow \sf { \dfrac{3x}{10} = Rs. \: 450 }\\

 \longrightarrow \sf { 3x = Rs. \: (450 \times 10) }\\

 \longrightarrow \sf { 3x = Rs. \: 4500 }\\

 \longrightarrow \sf { x = Rs. \: \cancel{\dfrac{4500}{3} }}\\

 \longrightarrow \sf { x = Rs. \: 1500 }\\

 \longrightarrow\underline{\boxed{ \sf { C.P = Rs. \: 1500 }}} \; \bigstar\\

Therefore, cost price of the article is Rs. 1500.

_____________________

Some related formulae :

  • Gain = S.P – C.P
  • Loss = C.P – S.P

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  •  \rm { Gain \: \% = \Bigg( \dfrac{Gain}{C.P} \times 100 \Bigg)\%}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  •  \rm { Loss \: \% = \Bigg( \dfrac{Loss}{C.P} \times 100 \Bigg)\%}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  •  \rm { S.P = \dfrac{100+Gain\%}{100} \times C.P}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  •  \rm { C.P =\dfrac{100}{100+Gain\%} \times S.P}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  •  \rm { S.P =  \dfrac{100-loss\%}{100} \times C.P}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  •  \rm { C.P =\dfrac{100}{100-loss\%} \times S.P}
Similar questions