Physics, asked by bairavaa448, 11 months ago

Show average ke and average pe in one oscillation of a body having shm are equal

Answers

Answered by nirman95
6

Answer:

To prove:

Average KE and Average PE in one Oscillation of a body having SHM are equal.

Proof:

Potential energy in SHM at any point is given as :

 \boxed{ \sf{ \red{PE =  \frac{1}{2} m { \omega}^{2}  {x}^{2}}}}

So , average Potential energy is given as the mean of the max and min PE.

  • Max PE is at amplitude
  • Min PE is at Mean position

\sf{ \red{PE_{avg} =  \dfrac{\frac{1}{2} m { \omega}^{2}  {A}^{2} + 0}{2}}}

\sf{ \red{PE_{avg} =  \dfrac{\frac{1}{2} m { \omega}^{2}  {A}^{2} }{2}}}

\sf{ \red{PE_{avg} =  \dfrac{1}{4} m { \omega}^{2}  {A}^{2}}}

Kinetic energy is given as follows :

 \boxed{ \sf{ \red{KE =  \frac{1}{2} m { \omega}^{2}  ({A}^{2}  -  {x}^{2})}}}

  • Max KE at Mean position
  • Min KE at Amplitude.

\sf{ \red{KE_{avg} =  \dfrac{0 + \frac{1}{2} m { \omega}^{2}  {A}^{2} }{2}}}

\sf{ \red{KE_{avg} =  \dfrac{ \frac{1}{2} m { \omega}^{2}  {A}^{2} }{2}}}

\sf{ \red{KE_{avg} =   \frac{1}{4} m { \omega}^{2}  {A}^{2} }}

So, we can say that :

 \boxed{ \bold{\sf{ \green{PE_{avg} = KE_{avg}}}}}

Answered by Anonymous
2

\blue{\underline{ \huge{ \blue{\boxed{ \mathfrak{\fcolorbox{red}{orange}{\purple{Answer}}}}}}}} \\  \\  \star \rm \:  \red{To \: Prove}

Average kinetic energy and Average potential energy of a body having SHM are equal...

 \star \rm \:  \red{Formula}

Formula of Kinetic energy of body havind SHM is given by...

 \dagger \:  \boxed{ \rm{ \pink{ \bold{KE =  \frac{1}{2} m{ { \omega}^{2} } ( {A}^{2}  -  {x}^{2} )}}}}

Formula of potential energy of body having SHM is given by...

 \dagger \:  \boxed{ \pink{ \rm{ \bold{PE =  \frac{1}{2} m{ { \omega}^{2} } {x}^{2} }}}}

 \star \rm \:  \red{Calculation}

  • Max KE of body having SHM is at mean position and Min KE is at amplitude position..
  • Max PE of body having SHM is at amplitude position and Min PE is at mean position...
  • For amplitude position x = A and for mean position x = 0

 \leadsto \rm \: KE{ \tiny{av}} =  \frac{KE{ \tiny{min}} + KE{ \tiny{max}}}{2}  =   \frac{0 +  \frac{1}{2}m{ { \omega}^{2} } {A}^{2}  }{2}  \\  \\  \leadsto  \: { \boxed{ \rm{ \bold{ \blue{KE{ \tiny{av}} =  \frac{1}{4}m{ { \omega}^{2} } {A}^{2}  }}}}} \\  \\  \leadsto \rm \: PE{ \tiny{av}} =  \frac{PE{ \tiny{min}} + PE{ \tiny{max}}}{2}  =  \frac{0 +  \frac{1}{2} m{ { \omega}^{2}} {A}^{2}  }{2}  \\  \\   \leadsto \:  \boxed{ \blue{ \bold{ \rm{PE{ \tiny{av}} =  \frac{1}{4} m{ { \omega}^{2} } {A}^{2} }}}} \\  \\  \dagger \:  \boxed{ \bold{ \orange{ \rm{KE{ \tiny{av}} = PE{ \tiny{av}} =  \frac{1}{4} m{ { \omega}^{2} } {A}^{2} }}}} \:  \dagger

Similar questions