Math, asked by koyel17, 6 months ago

Show from the gradients that the points (4,1),(1,2),(2,5) and (5,4) are the vertices of a square.
(This question is from the chapter Co-ordinate geometry)
Please help me to solve this and no spams please or else the answer will be reported ​

Answers

Answered by Anonymous
18

Question :-

Show from the gradients that the points (4,1),(1,2),(2,5) and (5,4) are the vertices of a square.

Solution :-

Let the vertices are,

R(4 , 1) , A(1 , 2) , J(2 , 5) , S(5 , 4)

We know that,

Distance formula, XY = (x2 - x1)² + (y2 - y1)²

Case (I),

•R(4 , 1) , A(1 , 2)

↪ RA = √(1 - 4)² + (2 - 1)²

↪ RA = √(3)² + (-1)²

↪ RA = √9 + 1

RA = 10 _________(1)

Case (II),

•A(1 , 2) , J(2 , 5)

↪ AJ = √(2 - 1)² + (5 - 2)²

↪ AJ = √(-1)² + (3)²

↪ AJ = √1 + 9

AJ = 10_________(2)

Case (III),

•J(2 , 5) , S(5 , 4)

↪ JS = √(5 - 2)² + (4 - 5)²

↪ JS = √(3)² + (-1)²

↪ JS = √9 + 1

JS = 10________(3)

Case (IV),

•R(4 , 1) , S(5 , 4)

↪ RS = √(5 - 4)² + (4 - 1)²

↪ RS = √(1)² + (3)²

↪ RS = √1 + 9

RS = 10__________(4)

From eqn. (1) , (2) , (3) and (4) , We get ;

RA = AJ = JS = RS

[ .°. All sides are equal ]

Therefore,

□ RAJS is a square.

Answered by rimpy754
11

```solution ```

let the vertices are

R ( 4,1 ) , A ( 1,2) , J (2,5), S (5,4)

we know that

distance \: formula \: xy =  \sqrt{( {x}^{2} }  -   {x}^{1} ) + ( {y}^{2}  -  {y}^{1}   {)}^{2}

case ( 1 )

ra =  \sqrt{(1 -   {4)}^{2} }  + (2 -  {1)}^{2}  \\ ra =  \sqrt{ {(3)}^{2} }  +  { (- 1)}^{2}  \\ ra =  \sqrt{9 + 1 }  \\ ra =  \sqrt{10} (1)

case (2)

aj =  \sqrt{(2 -  {1)}^{2} }  + (5 -  {2)}^{2}  \\ aj \sqrt{ ( -  {1)}^{2}  +  {(3)}^{2} } \\ aj =  \sqrt{1 + 9 }   \\ aj =  \sqrt{10} (2)

case (3)

js =  \sqrt{ {(5 - 2)}^{2}  +  {(4 - 5)}^{2} }  \\ js =  \sqrt{ {(3)}^{2}  +  {( - 1)}^{2} }  \\ js =  \sqrt{9 + 1}  \\ js =  \sqrt{10} (3)

case (4)

rs =  \sqrt{ {(5 - 4)}^{2}  +  {(4 - 1)}^{2} }  \\ rs =  \sqrt{ {(1)}^{2}  + ( {3)}^{2} }  \\ rs =  \sqrt{1 + 9}  \\ rs  =  \sqrt{10} (4)

from equation (1) ,(2 ),(3)and ( 4 )

we get

RA = AJ = JS = RS

( all sides are equal )

therefore

.......RAJS is a square......

Similar questions