Physics, asked by jangalegayatra, 4 months ago

show how you would connected three resistors ,each of resistance 6 G, so that the combination has a resistance of (1 ) 9 resistor, (2) 4 resistor.​

Answers

Answered by aakash5228
1

Answer:

1) first add two resistors in parallel then add the resulting resistance in series with third resistor

1/6+1/6=1/3

3+6=9

2) first add two resistors in series then add the resulting resistance in parallel with third resistor

6+6=12

1/12+1/6=1/4

4

Answered by begamsabnajbegam24
0

Answer:

Show how you would connected three resistors ,each of resistance 6 Ω, so that the combination has a resistance of (1) 9 Ω, (2) 4 Ω.

Answer:

1) Connect the parallel combination of two 6 Ω resistors with one 6 Ω in a series combination.

2) Connect the series combination of two 6 Ω resistors with one 6 Ω in a parallel combination.

Explanation:

1) To get the equivalent resistance of 9 Ω :

Refer to the attachment (i).

\rm R_1R

1

and \rm R_2R

2

are connected in parallel combination, so their combined resistance will be :

\begin{gathered} \longmapsto \rm { \dfrac{1}{R_{(1,2)}} = \dfrac{1}{R_1} + \dfrac{1}{R_2} } \\ \end{gathered}

R

(1,2)

1

=

R

1

1

+

R

2

1

\begin{gathered} \longmapsto \rm { \dfrac{1}{R_{(1,2)}} =\Bigg ( \dfrac{1}{6} + \dfrac{1}{6}\Bigg ) \; \text{\O}mega } \\ \end{gathered}

R

(1,2)

1

=(

6

1

+

6

1

)Ømega

\begin{gathered} \longmapsto \rm { \dfrac{1}{R_{(1,2)}} =\Bigg ( \dfrac{1 + 1}{6}\Bigg ) \; \text{\O}mega } \\ \end{gathered}

R

(1,2)

1

=(

6

1+1

)Ømega

\begin{gathered} \longmapsto \rm { \dfrac{1}{R_{(1,2)}} =\Bigg ( \dfrac{2}{6}\Bigg ) \; \text{\O}mega } \\ \end{gathered}

R

(1,2)

1

=(

6

2

)Ømega

\begin{gathered} \longmapsto \rm { R_{(1,2)} =\Bigg ( \dfrac{6}{2}\Bigg ) \; \text{\O}mega } \\ \end{gathered}

⟼R

(1,2)

=(

2

6

)Ømega

\begin{gathered} \longmapsto \rm { R_{(1,2)} = 3 \; \text{\O}mega } \\ \end{gathered}

⟼R

(1,2)

=3Ømega

Now, the combined resistance of \rm R_1R

1

and \rm R_2R

2

is connected in series combination with \rm R_3R

3

. So, equivalent resistance of the circuit will be :

\begin{gathered} \longmapsto \rm { R_{(1,2,3)} = R_{(1,2)} + R_3 } \\ \end{gathered}

⟼R

(1,2,3)

=R

(1,2)

+R

3

\begin{gathered} \longmapsto \rm { R_{(1,2,3)} = ( 3 +6) \; \text{\O}mega } \\ \end{gathered}

⟼R

(1,2,3)

=(3+6)Ømega

\begin{gathered} \longmapsto \bf { R_{(1,2,3)} = 9 \; \text{\O}mega } \\ \end{gathered}

⟼R

(1,2,3)

=9Ømega

∴ If we connect the parallel combination of two 6 Ω resistors with one 6 Ω in a series combination, we get the equivalent resistance of 9 Ω.

2) To get the equivalent resistance of 4 Ω :

Refer to the attachment (ii).

\rm R_1R

1

and \rm R_2R

2

are connected in series combination, so their combined resistance will be :

\begin{gathered} \longmapsto \rm { R_{(1,2)} = R_1 + R_2 } \\ \end{gathered}

⟼R

(1,2)

=R

1

+R

2

\begin{gathered} \longmapsto \rm { R_{(1,2)} =( 6+6) \; \text{\O}mega} \\ \end{gathered}

⟼R

(1,2)

=(6+6)Ømega

\begin{gathered} \longmapsto \rm { R_{(1,2)} = 12 \; \text{\O}mega} \\ \end{gathered}

⟼R

(1,2)

=12Ømega

Now, the combined resistance of \rm R_1R

1

and \rm R_2R

2

is connected in parallel combination with \rm R_3R

3

. So, equivalent resistance of the circuit will be :

\begin{gathered} \longmapsto \rm { \dfrac{1}{R_{(1,2,3)}} = \dfrac{1}{R_{(1,2)} } + \dfrac{1}{R_3} } \\ \end{gathered}

R

(1,2,3)

1

=

R

(1,2)

1

+

R

3

1

\begin{gathered} \longmapsto \rm { \dfrac{1}{R_{(1,2,3)}} =\Bigg ( \dfrac{1}{12} + \dfrac{1}{6}\Bigg ) \; \text{\O}mega } \\ \end{gathered}

R

(1,2,3)

1

=(

12

1

+

6

1

)Ømega

\begin{gathered} \longmapsto \rm { \dfrac{1}{R_{(1,2,3)}} =\Bigg ( \dfrac{1+2}{12} \Bigg ) \; \text{\O}mega } \\ \end{gathered}

R

(1,2,3)

1

=(

12

1+2

)Ømega

\begin{gathered} \longmapsto \rm { \dfrac{1}{R_{(1,2,3)}} =\Bigg ( \dfrac{3}{12} \Bigg ) \; \text{\O}mega } \\ \end{gathered}

R

(1,2,3)

1

=(

12

3

)Ømega

\begin{gathered} \longmapsto \rm { R_{(1,2,3)} =\Bigg ( \dfrac{12}{3}\Bigg ) \; \text{\O}mega } \\ \end{gathered}

⟼R

(1,2,3)

=(

3

12

)Ømega

\begin{gathered} \longmapsto \bf { R_{(1,2,3)} = 4 \; \text{\O}mega } \\ \end{gathered}

⟼R

(1,2,3)

=4Ømega

∴ If we connect the series combination of two 6 Ω resistors with one 6 Ω in a parallel combination, we get the equivalent resistance of 4 Ω.

Similar questions