Math, asked by yuvrajsarathe1, 1 day ago

show tan3x tan2x tanx= tan 3x-tan2x-tanx ​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

We know,

\rm \: 3x = 2x + x \\

So,

\rm\implies \:tan 3x =tan( 2x + x )\\

We know,

\boxed{ \rm{ \:tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}  \: }} \\

So, using this result, we get

\rm \: tan3x = \dfrac{tan2x + tanx}{1 - tan2x \: tanx}  \\

\rm \: tan3x(1 - tan2x \: tanx) = tan3x + tan2x \\

\rm \: tan3x - tan3x \: tan2x \: tanx = tan3x + tan2x \\

On rearranging the terms, we get

\rm \: tan3x - tan2x - tanx \:  =  \: tan3x \: tan2x \: tanx \\

Hence,

\rm\implies \:\boxed{ \rm{tan3x - tan2x - tanx =tan3x \: tan2x \: tanx \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(x  -  y) = sinx \: cosy \:  -  \: siny \: cosx}\\ \\ \bigstar \: \bf{sin(x + y) = sinx \: cosy \:  +  \: siny \: cosx}\\ \\ \bigstar \: \bf{cos(x + y) = cosx \: cosy \: -  \: sinx \: siny}\\ \\ \bigstar \: \bf{cos(x - y) = cosx \: cosy \:+\: siny \: sinx}\\ \\ \bigstar \: \bf{tan(x + y) = \dfrac{tanx + tany}{1 - tanx \: tany} }\\ \\ \bigstar \: \bf{tan(x - y) = \dfrac{tanx - tany}{1 + tanx \: tany} }\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by talpadadilip417
3

Step-by-step explanation:

Solution :

\begin{array}{l} \rm \tan (3 x)=\tan (2 x+x) \\ \\ \rm \therefore \tan (3 x)=\dfrac{\tan 2 x+\tan x}{1-\tan 2 x \tan x} \\ \\ \rm \therefore \tan 3 x[1-\tan 2 x \tan x]=\tan 2 x+\tan x \\ \\ \rm\therefore \tan 3 x-\tan 3 x \tan 2 x \tan x=\tan 2 x+\tan x \\ \\ \rm \therefore \tan 3 x-\tan 2 x-\tan x=\tan 3 x \tan 2 x \tan x \\ \\ \rm \therefore  \tan 3 x \tan 2 x \tan x=\tan 3 x-\tan 2 x-\tan x \end{array}

Similar questions