Show tat sin 78° + cos 132° = sin 18°.
Answers
Answered by
3
Before solving the problem, let us know some trigonometric formulae:
• sinC + sinD = 2 * sin{(C + D)/2} * cos{(C + D)/2}
• sinC - sinD = 2 * cos{(C + D)/2} * sin{(C - D)/2}
• cos60° = 1/2
• cos(90° + A) = - sinA
Now we try to prove the given problem:
L.H.S. = sin78° + cos132°
= sin78° + cos(90° + 42°)
= sin78° - sin42°
= 2 * cos{(78° + 42°)/2} * sin{(78° - 42°)/2}
= 2 * cos(120°/2) * sin(36°/2)
= 2 * cos60° * sin18°
= 2 * 1/2 * sin18°
= sin18° = R.H.S.
∴ sin78° + cos132° = sin18°
Hence proved.
Similar questions