Show tha 7+77+777+7777..... Principle of mathematical induction
Answers
The complete question is:
Using Principal of Induction, prove
7 + 77 + 777 + ... + 7777...77 (n digits)
= 7/81 * (10ⁿ⁺¹ - 9n - 10)
Proof:
Step 1.
For n = 1 the statement is true because
7 = 7/81 * (10¹⁺¹ - 9.1 - 10)
Step 2.
Let us assume that the statement is true for some natural number n = k.
Then 7 + 77 + 777 + ... + 777...77 (k digits)
= 7/81 * (10ᵏ⁺¹ - 9k - 10)
Now for n = k + 1, we get
7 + 77 + 777 + ... + 777...777 + 7777...777 (k + 1 digits)
= (7 + 77 + 777 + ... + 777.777) (k digits) + 7777...7777 (k + 1) digits
= 7/81 * (10ᵏ⁺¹ - 9k - 10) + 7 * 1111...1111 (k + 1) digits
= 7/81 * (10ᵏ⁺¹ - 9k - 10) + 7/9 * (10ᵏ⁺¹ - 1) (for k + 1 digits)
= 7/81 * (10ᵏ⁺¹ - 9k - 10 + 9 * 10ᵏ⁺¹ - 9)
= 7/81 * (10.10ᵏ⁺¹ - 9k - 9 - 10)
= 7/81 * {10¹⁺ᵏ⁺¹ - 9 (k + 1) - 10}
= 7/81 * {10ᵏ⁺¹⁺¹ - 9 (k + 1) - 10}
This shows that the statement is true for the natural number (k + 1) if it is true for k.
Therefore by the Principle of Induction, the statement is true for all natural numbers n.
This completes the proof.