Math, asked by Anonymous, 10 months ago

show that: 1/(1+a^n-m) + 1/(1+a^m-n) =1

Please help me....

Answers

Answered by Anonymous
1

Answer:

\displaystyle\frac1{1+a^{n-m}}+\frac1{1+a^{m-n}}\\\\\\=\frac{\bigl(1+a^{m-n}\bigr)+\bigl(1+a^{n-m}\bigr)}{\bigl(1+a^{n-m}\bigr)\bigl(1+a^{m-n}\bigr)}\\\\\\=\frac{2+a^{m-n}+a^{n-m}}{1+a^{m-n}+a^{n-m}+a^{(n-m)+(m-n)}}\\\\\\=\frac{2+a^{m-n}+a^{n-m}}{1+a^{m-n}+a^{n-m}+a^0}\\\\\\=\frac{2+a^{m-n}+a^{n-m}}{2+a^{m-n}+a^{n-m}}\\\\\\=1

Similar questions