show that 1/1+sin theta +. 1/1-sin theta =2sec²theta
Answers
Question : -
Prove that (1)/(1+sin x) + (1)/(1-sin x) = 2sec² x
ANSWER
Given : -
(1)/(1+sin x) + (1)/(1-sin x) = 2sec² x
Required to prove : -
- LHS = RHS
Proof : -
(1)/(1+sin x) + (1)/(1-sin x) = 2sec² x
Consider the LHS part;
(1)/(1+sin x) + (1)/(1-sin x)
Multiply numerator & denominator of the 1st part of LHS with 1-sin x
(1)/(1+sin x) x (1-sin x)/(1-sin x) + (1)/(1-sin x)
(1-sin x)/([1]²-[sin x]²) + (1)/(1-sin x)
(1-sin x)/(1²-sin² x) + (1)/(1-sin x)
(1-sin x)/(1-sin² x) + (1)/(1-sin x)
Multiply numerator & denominator of the 2nd part of LHS with 1+sin x
(1-sin x)/(1-sin² x) + (1)/(1-sin x) x (1+sin x)/(1+sin x)
(1-sin x)/(1-sin² x) + (1+sin x)/([1]²-[sin x]²)
(1-sin x)/(1-sin² x) + (1+sin x)/(1²-sin² x)
(1-sin x)/(1-sin² x) + (1+sin x)/(1-sin² x)
Since, denominator let's take the LCM
(1-sin x + 1+sin x)/(1-sin² x)
(1+1)/(1-sin² x)
(2)/(1-sin² x)
From the identity;
- sin² x + cos² x = 1
- => cos² x = 1-sin² x
(2)/(cos² x)
This is can be written as;
2 x (1)/(cos² x)
Since,
- 1/cos x = sec x
2 x sec² x
2sec² x
Consider the RHS part;
2sec² x
LHS = RHS
Hence Proved ✓