show that 1÷1+x power a-b+1÷1+x power b-a =1
Answers
Step-by-step explanation:
We have to prove that,
\frac{1}{1+x^{a-b}}+\frac{1}{1+x^{b-a}}=1
L.H.S.
\frac{1}{1+x^{a-b}}+\frac{1}{1+x^{b-a}}
=\frac{1}{1+\frac{x^a}{x^b}}+\frac{1}{1+\frac{x^b}{x^a}}
( Since, a^{m-n}=\frac{a^m}{a^n} )
=\frac{1}{\frac{x^b+x^a}{x^a}}+\frac{1}{\frac{x^a+x^b}{x^a}}
=\frac{x^a}{x^b+x^a}+\frac{x^a}{x^a+x^b}
=\frac{x^a+x^b}{x^a+x^b}
=1
= R.H.S.
Hence, proved.
mark me as a brainlist thankyou
Answer:
The given equation is:
\frac{1}{1+x^{a-b}}+\frac{1}{1+x^{b-a}}
=\frac{1}{1+\frac{x^a}{x^b}}+\frac{1}{1+\frac{x^b}{x^a}}
=\frac{1}{\frac{x^b+x^a}{x^b}}+\frac{1}{\frac{x^a+x^b}{x^a}}
=\frac{x^b}{x^b+x^a}+\frac{x^a}{x^b+x^a}
=\frac{x^a+x^b}{x^a+x^b}
=1
Thus, the value of the given equation is 1.
Step-by-step explanation:
plzz mark as brainlist