Math, asked by komal17137, 3 months ago

show that
1/(2-√3) - 1/(√3-√2)+1/(√2-1)​

Attachments:

Answers

Answered by Anonymous
5

Given

 \sf \to \:  \dfrac{1}{(2 -  \sqrt{3}) }  -  \dfrac{1}{( \sqrt{3}  -  \sqrt{2} )}  +  \dfrac{1}{( \sqrt{2}  - 1)}  = 3

Now Take

 \sf \to \:  \dfrac{1}{(2 -  \sqrt{3}) }  -  \dfrac{1}{( \sqrt{3}  -  \sqrt{2} )}  +  \dfrac{1}{( \sqrt{2}  - 1)}

And Use Rationalization Method

 \sf \to \:  \dfrac{1}{(2 -  \sqrt{3}) }  \times  \dfrac{(2 +  \sqrt{3} )}{(2 +  \sqrt{3}) }  -  \dfrac{1}{( \sqrt{3}  -  \sqrt{2} )} \times  \dfrac{( \sqrt{3} +  \sqrt{2})}{( \sqrt{3}  +  \sqrt{2})}  +  \dfrac{1}{( \sqrt{2}  - 1)}  \times  \dfrac{ \sqrt{2} + 1 }{ \sqrt{2 + 1} }

We Use this identities

 \sf \to(a - b)(a + b) =  {a}^{2}  -  {b}^{2}

We get

 \sf \to \:  \dfrac{(2 +  \sqrt{3}) }{(2 -  \sqrt{3})(2 +  \sqrt{3})}  -  \dfrac{ (\sqrt{3}  +  \sqrt{2}) }{( \sqrt{3}  -  \sqrt{2})( \sqrt{3}   +  \sqrt{2} )}  +  \dfrac{( \sqrt{2} - 1) }{( \sqrt{2} - 1)( \sqrt{2}   + 1)}

 \sf \to \:  \dfrac{(2 +  \sqrt{3}) }{(2) {}^{2}  -  (\sqrt{3})^{2}}-  \dfrac{ (\sqrt{3}  +  \sqrt{2}) }{( \sqrt{3} ) {}^{2}  -  (\sqrt{2}) {}^{2} }  +  \dfrac{( \sqrt{2} - 1) }{( \sqrt{2})^{2}  - 1)}

 \sf \to \:  \dfrac{2 +  \sqrt{3} }{4 - 3}  -  \dfrac{ \sqrt{3} +  \sqrt{2}  }{3 - 2}  +  \dfrac{ \sqrt{2} + 1 }{2 - 1}

 \sf \to \:  \dfrac{2 +  \sqrt{3} }{1}  -  \dfrac{ \sqrt{3} +  \sqrt{2}  }{1}  +  \dfrac{ \sqrt{2} + 1 }{1}

 \sf \to \: 2 +  \sqrt{3}  -  \sqrt{3}  -  \sqrt{2}  +  \sqrt{2}  + 1

 \sf \to \: 2 + 1

 \sf \to \: 3

Hence proved

Similar questions